
A Parallel Overlapping Time-Domain Decomposition
Method for ODEs

Stefan Güttel1

University of Geneva, Department of Mathematics, 1–2 rue du Lievre, CH-1202 Geneva,
stefan.guettel@unige.ch

We introduce an overlapping time-domain decomposition for linear initial-value
problems which gives rise to an efficient solution method for parallel computers
without resorting to the frequency domain. This parallel method exploits the fact
that homogeneous initial-value problems can be integrated much faster than inho-
mogeneous problems by using an efficient Arnoldi approximation for the matrix ex-
ponential function.

1 Introduction

We are interested in the parallel solution of a linear initial-value problem

u′(t) = Au(t)+g(t), t ∈ [0,T], u(0) = u0, (1)

where A ∈ RN×N is a possibly large (and sparse) matrix and u,g : t 7→ RN . Through-
out this paper we assume that the function g(t) is a source term which is difficult
to integrate numerically (e.g., highly oscillating or given by a slow computer sub-
routine). For example, if (1) arises from the space discretization of a heat-diffusion
problem, then A represents a diffusion operator and g(t) is a time-dependent heat
source.

Problems of the above form arise often in scientific computing, and various solu-
tion methods for parallel computers have been proposed in the literature. A popular
approach (see, e.g., [8, 1]) is based on the Laplace-transformed equation

sû(s)−u0 = Aû(s)+ ĝ(s)

and the contour integral representation of the inverse transformation

u(t) =
1

2πi

∫
Γ

etsû(s)ds,

with a suitable contour Γ surrounding the singularities of û(s) (which are the eigen-
values of A and all singularities of ĝ(s)). Discretization of this integral by a quadra-
ture formula with complex nodes s j and weights w j yields

202 Stefan Güttel

u(t)≈
p

∑
j=1

w jû(s j) =
p

∑
j=1

w j(s jI−A)−1(u0 + ĝ(s j)).

This method is suitable for parallel computation because the p complex shifted linear
systems are decoupled. On the other hand, there are obvious drawbacks such as the
introduction of complex arithmetic into a real problem and the need for calculating
ĝ(s j). Moreover, many nodes s j may be required to represent a stiff source g(t) to
prescribed accuracy.

Another approach, perhaps closest in spirit to the method described here, is
known as exponential quadrature. It is based on the variation-of-constants formula

u(t) = etAu0 +
∫ t

0
e(t−τ)Ag(τ)dτ

and the approximation of the integrand by a quadrature rule in nodes τ1, . . . ,τp. This
yields p+1 independent matrix exponentials

etAu0 and e(t−τ j)Ag(τ j) for j = 1, . . . , p,

each of which may be approximated efficiently by a Krylov method (see the discus-
sion in Section 3). However, exponential quadrature is impractical if the source term
g(t) is stiff enough so that too many quadrature nodes are needed.

To overcome the problems mentioned above, we propose in Section 2 a decom-
position of (1) into subproblems on overlapping time intervals. These subproblems
are decoupled and can be assigned to independent processors. Our method requires
almost no communication or synchronization between the processors, except a sum-
mation step at the end of the algorithm. Another advantage of our method is its ease
of implementation; any available serial integrator for (1) can be used in black-box
fashion. Because the efficiency of our method relies on the fast integration of ho-
mogeneous linear initial-value problems, Section 3 contains a brief discussion of the
Arnoldi method for computing the matrix exponential function. In Section 4 we dis-
cuss the error control and parallel efficiency of our method. In Section 5 we present
results of a numerical experiment.

2 Overlapping time-domain decomposition

On a time grid {Tj = jT/p : j = 0, . . . , p} we decompose (1) into the following
subproblems of two types.

Type 1 : For j = 1, . . . , p solve

v′j(t) = Av j(t)+g(t), v j(Tj−1) = 0, t ∈ [Tj−1,Tj],

using some serial integrator.

A Parallel Overlapping Time-Domain Decomposition Method for ODEs 203

Type 2 : For j = 1, . . . , p solve

w′j(t) = Aw j(t), w j(Tj−1) = v j−1(Tj−1), t ∈ [Tj−1,T],

using exponential propagation (we set v0(T0) := u0).

Note that the p subproblems of Type 1 are completely decoupled due to the ho-
mogeneous initial values. The same is true for each subproblem of Type 2, the exact
solution of which can be computed as

w j(t) = e(t−Tj−1)Av j−1(Tj−1) (2)

as soon as the initial value v j−1(Tj−1) is available. Therefore it is natural to assign
the integrations for v j−1 and w j to the same processor so that there is no need for
communication and synchronization between the two types of subproblems. Note
that the time intervals [Tj−1,T] for the w j are overlapping (see also Figure 1). By
superposition, the solution of (1) is

u(t) = vk(t)+
k

∑
j=1

w j(t) with k such that t ∈ [Tk−1,Tk].

Only the computation of this sum requires communication between the processors.
Our parallel algorithm is given by simultaneously integrating the subproblems of
Type 1 and Type 2, and finally forming the sum for u(t) at the required time points t.

T1T0 T2 T4T3

u0

Fig. 1. Time-domain decomposition of an initial-value problem into inhomogeneous subprob-
lems with zero initial value (Type 1, solid red curves) and overlapping homogeneous subprob-
lems (Type 2, dashed blue curves). The solution is obtained as the sum of all curves.

3 Computing the matrix exponential

The overlapping propagation of the linear homogeneous subproblems of Type 2 is
clearly redundant. To obtain an efficient parallel method, we require that the com-
putation of the matrix exponentials in (2) is fast compared to the integration of the
subproblems of Type 1.

204 Stefan Güttel

For scalar problems (N = 1) the computation of the exponential is a trivial task.
For computing the exponential of small to medium-sized dense matrices (N / 500)
there are various methods available, see the review [5] and the monograph [4].

The computations become more challenging when the problem size N gets large,
in which case the matrix A should be sparse. Then one has to make use of the
fact that not the matrix exponential exp(tA) itself is required, but only the prod-
uct exp(tA)v0 with a vector v0, by using a polynomial or rational Krylov method
(see [3] and the references therein). For brevity we will only describe a variant of
the restricted-denominator Arnoldi method described in [6] (see also [9]), which ex-
tracts an approximation fn(t)≈ exp(tA)v0 from a Krylov space built with the matrix
S = (I−A/σ)−1A,

Kn(S,v0) = span{v0,Sv0, . . . ,Sn−1v0},

the choice of the parameter σ ∈ (R∪{∞}) \ (Λ(A)∪{0}) being dependent on the
spectral properties of A. For σ = ∞ we obtain a standard Krylov space with the ma-
trix A, i.e., Kn(S,v0) = Kn(A,v0). If Kn(S,v0) is of full dimension n, as we assume
in the following, we can compute an orthonormal basis Vn = [v1,v2, . . . ,vn] by us-
ing the well-known Arnoldi orthogonalization process (see, e.g., [2, §9.3.5]). The
Arnoldi approximation of exp(tA)v0 is then defined as

fn(t) :=Vn exp(t (S−1
n + In/σ)−1)V ∗n v0, Sn :=V ∗n SVn.

Provided that n is small, the computation of fn(t) requires the evaluation of a n× n
matrix function which is small compared to the original N×N matrix exponential.
Moreover, the matrix Sn can be constructed without explicit projection from quanti-
ties computed in the Arnoldi process.

In Figure 2 we show the error norm ‖exp(A)v0− fn(1)‖2 of the Arnoldi approx-
imations with parameters σ = ∞ and σ = 40 (a rather arbitrary choice) as a function
of n, for the matrices

A1 = tridiag(30,−40,10) ∈ R199×199, A2 = tridiag(60,−90,30) ∈ R299×299

arising from the finite-difference discretization of the same 1D advection–diffusion
problem, and a random vector v0. We have also plotted the error of orthogonal pro-
jection of the exact solution onto the space Kn(S,v0), namely VnV ∗n eAv0, and observe
that the Arnoldi method is capable of extracting an approximation nearby this projec-
tion. For comparison we show the error of the result produced by n steps of various
explicit and implicit integrators for the initial-value problem v′ = Av, v(0) = v0, inte-
grated to t = 1. For this linear homogeneous problem all integrators actually compute
approximations from some Krylov space Kn(S,v0) (for the explicit integrators with
shift σ =∞ and for implicit Euler with σ = n), but the Arnoldi methods extract much
better approximations in the same number of iterations. Note also that the Arnoldi
method with finite shift σ = 40 converges almost independently of the problem size
N, a property often referred to as mesh-independence.

Because the error of Arnoldi approximations decays usually very fast (i.e.,
‖etAv0− fn+1(t)‖ is considerably smaller than ‖etAv0− fn(t)‖), it is often sufficient

A Parallel Overlapping Time-Domain Decomposition Method for ODEs 205

to use the difference of two consecutive iterates as an estimate for the approximation
error:

‖etAv0− fn(t)‖ ≤ ‖etAv0− fn+1(t)‖+‖ fn+1(t)− fn(t)‖
≈ ‖ fn+1(t)− fn(t)‖. (3)

0 50 100 150 200

10
−15

10
−10

10
−5

10
0

iterations n

0 100 200 300

10
−15

10
−10

10
−5

10
0

iterations n

explicit Euler

explicit RK4

Arnoldi (σ=∞)

projection

implicit Euler

Arnoldi (σ=40)

projection

Fig. 2. Error (2-norm) of various time-stepping methods and Krylov methods for a linear
homogeneous advection–diffusion problem v′ = Av, v(0) = v0, of size N = 199 (left) and
N = 299 (right) as a function of time steps or Krylov space dimension n, respectively.

4 Error control and parallel efficiency

Many ODE solvers, for example those of MATLAB, use an error control criterion like

‖e(t)‖∞ ≤max{reltol · ‖ũ(t)‖∞,abstol}, t ∈ [0,T],

where e(t) = u(t)− ũ(t) is the (estimated) error of the computed solution ũ(t). Be-
cause the inhomogeneous subproblems of Type 1 for v j(t) are solved with zero initial
guess, it is not advisable to use an error criterion which is relative to the norm of the
solution. Hence we assume that all of these subproblems are solved with an abso-
lute error ‖e j(t)‖∞ ≤ abstol/p over the time interval [Tj−1,Tj]. This error is then
propagated exponentially over the remaining interval [Tj,T], hence we have to study
the transient behavior of

‖etAe j(Tj)‖∞ ≤ ‖etA‖∞abstol/p (4)

for t ∈ [0,T −Tj]. It is well known that for a stable matrix A (i.e., all eigenvalues lie
in the left complex half-plane) the limit limt→∞ ‖etA‖∞ is finite. Unfortunately, the

206 Stefan Güttel

norm may initially grow arbitrarily large before convergence sets in, a phenomenon
usually referred to as hump (see [5]). However, for a diagonally dominant matrix
A = (ai j) with aii ≤ 0 this cannot happen, as one can show as follows (cf. [7]):
Define ρ = maxi{aii +∑ j 6=i |ai j|} ≤ 0. By the formula exp(tA) = limk→∞(I+ tA/k)k

we have ‖etA‖∞ ≤ limk→∞ ‖I + tA/k‖k
∞. For k sufficiently large we have

‖I + tA/k‖∞ = max
i

{
1+ t

(
aii +∑

j 6=i
|ai j|

)
/k
}
= 1+ tρ/k,

hence
‖etA‖∞ ≤ lim

k→∞
(1+ tρ/k)k = etρ ≤ 1 for all t ≥ 0.

Of course, it is possible to estimate the behavior of ‖etA‖ for general matrices and in
other norms (see, e.g., [10]), but for brevity we will only consider a diagonally dom-
inant A. In this case the errors e j(t) of the subproblem solutions v j(t) (j = 1, . . . , p)
are non-increasing when being exponentially propagated, and if we assume that
the subproblems of Type 2 are solved exactly (or with sufficiently high accuracy),
then the overall error e(t) is bounded1 by the sum of subproblem errors (4), hence
‖e(t)‖∞ ≤ abstol. If the integrator is a time-stepping method of order q, it is rea-
sonable to assume that the computation time for one subproblem of Type 1 is at
most τ1(p) = (τ0 · p1/q)/p, where τ0 is the computation time for serial integration
over [0,T]. If each subproblem of Type 2 takes at most τ2 units of computation time,
the expected efficiency of our parallel algorithm is at least

efficiency =
speedup

p
=

1
p
· τ0

τ1(p)+ τ2
=

(
p1/q +

p · τ2

τ0

)−1

. (5)

The efficiency becomes large if the serial computation time τ0 is long compared to
p · τ2, and if the integration order q is high.

5 Numerical example

As a simple model problem we consider the 1D heat equation

∂tu(t,x) = α ∂xxu(t,x)+g(t,x) on x ∈ (0,1),
u(t,0) = u(t,1) = 0,
u(0,x) = u0(x) = 4x(1− x),

g(t,x) = emax{1−|c− x|/d,0}, where c = .5+(.5−d)sin(2π f t).

The source term g(t,x) is a hat function centered at c with half-width d = 0.05 and
height e = 100 ·α1/2, oscillating with frequency f . Finite-difference discretization

1 This worst-case bound is sharp only if all errors e j are collinear, which is rather unlikely.
Probabilistic error estimation would give ‖e(t)‖∞ / abstol/

√
p. This explains why the

observed parallel efficiency of our algorithm is usually better than predicted by (5). We
plan to investigate this in a sequel.

A Parallel Overlapping Time-Domain Decomposition Method for ODEs 207

at N = 100 points x j = j/(N +1) (j = 1, . . . ,N) yields an initial-value problem (1),
where A = α(N +1)2 tridiag(1,−2,1) ∈ RN×N . This problem is integrated over the
time interval [0,T = 1]. For the serial integration we have used the classical Runge–
Kutta method of order q = 4 (implemented in MATLAB) with constant step size

h0 = min{5 ·10−5/α,10−2/ f},

chosen to avoid instability of the time-stepping method caused by the stiff linear
term Au(t) and to capture the oscillations of g(t). As shown in Table 1, the absolute
error (∞-norm) is at most 5 · 10−4 for all diffusion coefficients α = 0.01,0.1,1 and
frequencies f = 1,10,100. These parameters determine the stiffness of Au(t) and
g(t), respectively. We have also tabulated the serial integration times τ0. As expected,
these are roughly proportional to h−1

0 .
For our parallel algorithm we have partitioned the interval [0,T] in p = 4 subin-

tervals, and computed the solution u(t) at all time points Tj = jT/p (j = 1, . . . , p).
The subproblems of Type 1 are integrated with step size h1 = h0/

√
p1/q (based on a

probabilistic error assumption, see the footnote on page 206). In Table 1 we list the
maximal computation time τ1 for all subproblems of Type 1 among all processors.

For the subproblems of Type 2 we have used the Arnoldi method described in
Section 3 with shift σ = 5.3, in combination with the ∞-norm error estimate (3) for
an accuracy of 10−4 (for more details on the selection of σ we refer to [9]). In Table 1
we list the maximal computation time τ2 for all subproblems of Type 2 among all
processors.

The errors of the final solutions computed with our parallel algorithm are shown
in the second-last column, and they are all below the errors obtained by sequential
integration. This indicates that our choice for the step size h1 is reasonable. The par-
allel efficiency of our algorithm is above 50 % for all nine tests, and it increases with
frequency f because smaller time steps are required to integrate the inhomogene-
ity accurately. We finally note that for large-scale computations our algorithm could
also be used to further speed up a saturated space parallelization (e.g., by domain
decomposition).
Acknowledgment: I am grateful to Martin J. Gander for many helpful discussions
and valuable comments.

References

[1] I. P. Gavrilyuk and V. L. Makarov. Exponentially convergent algorithms for the
operator exponential with applications to inhomogeneous problems in Banach
spaces. SIAM J. Numer. Anal., 43:2144–2171, 2005.

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, Baltimore, MD, 3rd edition, 1996.

[3] S. Güttel. Rational Krylov Methods for Operator Functions. PhD thesis, Insti-
tut für Numerische Mathematik und Optimierung der Technischen Universität
Bergakademie Freiberg, 2010.

208 Stefan Güttel

Table 1. Serial and parallel performance with p = 4 processors for a heat equation with diffu-
sion coefficient α and source-term frequency f .

α f
serial parallel effi-

τ0 error τ1 τ2 error ciency
0.01 1 4.97e−02 3.01e−04 1.58e−02 9.30e−03 2.17e−04 50 %
0.01 10 2.43e−01 4.14e−04 7.27e−02 9.28e−03 1.94e−04 74 %
0.01 100 2.43e+00 1.73e−04 7.19e−01 9.26e−03 5.68e−05 83 %
0.1 1 4.85e−01 2.24e−05 1.45e−01 9.31e−03 5.34e−06 79 %
0.1 10 4.86e−01 1.03e−04 1.45e−01 9.32e−03 9.68e−05 79 %
0.1 100 2.42e+00 1.29e−04 7.21e−01 9.24e−03 7.66e−05 83 %
1 1 4.86e+00 7.65e−08 1.45e+00 9.34e−03 1.78e−08 83 %
1 10 4.85e+00 8.15e−06 1.45e+00 9.33e−03 5.40e−07 83 %
1 100 4.85e+00 3.26e−05 1.44e+00 9.34e−03 2.02e−05 84 %

[4] N. J. Higham. Functions of Matrices. Theory and Computation. SIAM,
Philadelphia, PA, 2008.

[5] C. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponen-
tial of a matrix, twenty-five years later. SIAM Rev., 45:3–39, 2003.

[6] I. Moret and P. Novati. RD-rational approximations of the matrix exponential.
BIT, 44:595–615, 2004.

[7] D. L. Powers and R. Jeltsch. Problem 74-5: On the norm of a matrix exponen-
tial. SIAM Rev., 17:174–176, 1975.

[8] D. Sheen, I. H. Sloan, and V. Thomée. A parallel method for time discretization
of parabolic equations based on Laplace transformation and quadrature. IMA
Journal of Numerical Analysis, 23:269–299, 2003.

[9] J. van den Eshof and M. Hochbruck. Preconditioning Lanczos approximations
to the matrix exponential. SIAM J. Sci. Comput., 27:1438–1457, 2006.

[10] C. F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer.
Anal., 14:971–981, 1977.

