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Matrix functions are a central topic of linear algebra, and problems of their numerical ap-
proximation appear increasingly often in scientific computing. We review various rational
Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the
rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method
and the shift-and-invert Arnoldi method, but we also discuss the nonorthogonal generalized
Leja point (or PAIN) method. The issue of optimal pole selection for rational Krylov methods
applied for approximating the resolvent and exponential function, and functions of Markov
type, is treated in some detail.
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1 Introduction

An important problem of science and engineering is the efficient computation of the matrix-
vector product f(A)b, where A ∈ CN×N is a matrix, b ∈ CN is a vector, and f is a
function such that the matrix function f(A) is defined. A most general definition of f(A)
is given by f(A) := pf,A(A), where pf,A is a Birkhoff interpolation polynomial for f at
the eigenvalues λi ∈ Λ(A), counted by their multiplicity in the minimal polynomial of A.
Hence, f(A) is defined if and only if for every λi ∈ Λ(A) with multiplicity νi the derivatives
f(λi), f

′(λi), . . . , f
(νi−1)(λi) exist. If f is analytic in a neighborhood of Λ(A), an elegant

definition of f(A) is the Cauchy integral formula

f(A) =
1

2πi

∫
Γ

f(ζ)(ζI −A)−1 dζ,

with a contour Γ winding around every eigenvalue λi exactly once. There are other equivalent
definitions of f(A), and we refer to the monographs by Golub & Van Loan [1, Chapter 11],
Horn & Johnson [2, Chapter 6], and Higham [3], and the review by Frommer & Simoncini [4]
for detailed expositions of these. (The last two of these references also include discussions of
polynomial Krylov methods for approximating matrix functions.)

∗ This work was supported by Deutsche Forschungsgemeinschaft Fellowship No. GU 1244/1-1.
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2 S. Güttel: Rational Krylov approximation of matrix functions

Matrix functions are interesting for scientific computing because they arise in explicit so-
lution formulas for relevant algebraic and differential equations. In many applications, the
function f = fτ to be approximated also depends on a parameter τ , which often corresponds
to frequency or time. Here are some examples:

• The solution of a (shifted) linear system (A−τI)x = b is given as x (τ) = (A−τI)−1b ,
or equivalently, x (τ) = fτ (A)b with fτ (z) = (z−τ)−1. In model order reduction prob-
lems in the frequency domain, the parameter τ typically is a purely imaginary number
associated with frequency [5–7]1.

• The solution of the fundamental dynamical system u ′(τ) + Au(τ) = 0 can be written
in terms of the matrix exponential function u(τ) = exp(−τA)u(0). This function and
variants thereof arise when solving space-discretized evolution problems via exponential
integrators [8–14], in network analysis applications [15–19], nuclear magnetic resonance
spectroscopy [20], quantum physics [21], and geophysics [22–24].

• The solution of u ′′(τ) = Au(τ) is u(τ) = exp(τ
√
A)c1 + exp(−τ

√
A)c2, with vec-

tors c1, c2 chosen to match the initial conditions. Such problems arise from the space
discretization of time-dependent hyperbolic problems [25].

• Fractional powers f(z) = zα, in particular with α = ±1/2, arise in the context of
(stochastic) differential equations in population dynamics [26], reaction–diffusion prob-
lems [27], neutron transport [28, 29], and domain decomposition methods [30].

• The sign function f(z) = sgn(z), often expressed in terms of the inverse square root as
sgn(z) = z/

√
z2, arises in quantum chromodynamics [31, 32].

In many applications, the matrix A is large and typically sparse or structured. In this case
it is prohibitive to first compute the generally dense matrix f(A) and then form the product
with b . The rational Krylov methods reviewed here avoid this problem by using a projection
or interpolation approach for computing approximations to the vector f(A)b from a low-
dimensional search space without forming f(A) explicitly. Note that this is different from the
direct approximation approach where f is replaced by an explicitly computed rational func-
tion r such that r(A) ≈ f(A) [13, 33–37]. However, all these methods have in common the
fact that linear system solves with (shifted versions of) A are required, and in rational Krylov
methods one typically solves one linear system per iteration. Therefore a rational Krylov
iteration may be considerably more expensive (in terms of computation time) than a polyno-
mial Krylov iteration, which involves only a matrix-vector product with A. The applicability
of rational Krylov methods hinges on the efficiency by which these linear systems can be
solved. Since rational functions may exhibit approximation properties superior to polynomi-
als, the number of overall iterations required by rational Krylov methods is hopefully smaller
than that required by polynomial methods, provided that the poles of the rational functions
involved have been chosen in a suitable way.

This review partly follows the exposition in my thesis [38] of 2010, but I have updated
and extended the discussion of optimal pole selection, which has been an active research

1 Whenever we cite several references in a row, such as [5–7], this is a possibly non-exhaustive list and should
be read as “see, e.g., [5–7] and the references therein.”
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topic in recent years. The outline is as follows. Section 2 is an introduction to rational Krylov
spaces and the rational Arnoldi algorithm. Various rational Krylov methods for approximating
f(A)b are described in Section 3, with an emphasis on the rational Arnoldi method and vari-
ants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi
method, but also the nonorthogonal generalized Leja point (or PAIN) method is included. For
obtaining fast convergent rational Krylov methods the selection of optimal or near-optimal
poles is crucial, and Section 4 is devoted to this issue.

2 Rational Krylov spaces and the rational Arnoldi algorithm

Rational Krylov methods for computing f(A)b all have in common the fact that an approxi-
mation at iteration m is of the form rm(A)b , where rm = pm−1/qm−1 is a rational function
with a prescribed denominator polynomial qm−1 ∈ Pm−1. We will assume in the following
that qm−1 is factored as

qm−1(z) =

m−1∏
j=1

(1− z/ξj), (1)

where the poles ξ1, ξ2, . . . are numbers in the extended complex plane C := C∪{∞} different
from all eigenvalues λ ∈ Λ(A) and 0. The exclusion of the pole 0 is a nonessential restriction,
as one could exclude any other finite number σ by shifting z = ẑ + σ and all ξj = ξ̂j + σ.
The rational Krylov space of order m associated with (A, b) is defined as (see [39, 40])

Qm(A, b) := qm−1(A)−1span{b, Ab, . . . , Am−1b}.

The name “Qm(A, b)” is intended to remind the reader that there is always a denominator
qm−1 associated with it, even if this polynomial does not appear explicitly in our notation.

By assumption (1) on the denominators qm−1, rational Krylov spaces are nested and of
strictly increasing dimension m until some invariance index M ≤ N is reached:

Q1(A, b) ⊂ · · · ⊂ Qm(A, b) ⊂ · · · ⊂ QM (A, b) = QM+1(A, b) = · · ·

If all the poles ξ1, ξ2, . . . , ξm−1 are set to infinity, then qm−1 ≡ 1 and the rational Krylov
space Qm(A, b) reduces to a polynomial Krylov space

Km(A, b) = span{b, Ab, . . . , Am−1b}.

As long as m ≤ M , which we assume in the following, one can compute an orthonormal
basis Vm = [v1, . . . , vm] ∈ CN×m of Qm(A, b). This is typically done by Ruhe’s rational
Arnoldi algorithm [40], which we now briefly describe. In the first iteration one sets v1 =
b/‖b‖, which is a basis vector ofQ1(A, b). In subsequent iterations, a vector vj+1 is obtained
by orthonormalizing

xj = (I −A/ξj)−1Avj (2)

against the previously computed orthonormal vectors v1, . . . , vj . The orthogonalization yields

xj =

j+1∑
i=1

vihi,j , (3)
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4 S. Güttel: Rational Krylov approximation of matrix functions

with a nonzero normalization coefficient hj+1,j . At this stage we have computed an orthonor-
mal basis {v1, . . . , vj+1} ofQj+1(A, b). Equating (2) and (3) and left-multiplying both sides
by I −A/ξj , and separation of the terms containing A, gives

A

(
vj +

j+1∑
i=1

vihi,jξ
−1
j

)
=

j+1∑
i=1

vihi,j .

For j = 1, . . . ,m < M we can collect these equations in a rational Arnoldi decomposition

AVm(Im+HmDm)+Avm+1hm+1,mξ
−1
m eTm = VmHm+vm+1hm+1,meTm, (4)

where Dm = diag(ξ−1
1 , . . . , ξ−1

m ) and em denotes the m-th unit coordinate vector in Rm.
Setting

Hm :=

[
Hm

hm+1,meTm

]
and Km :=

[
Im +HmDm

hm+1,mξ
−1
m eTm

]
,

we may formulate (4) more succinctly as

AVm+1Km = Vm+1Hm, (5)

where Hm and Km are unreduced upper Hessenberg matrices of size (m + 1) × m (in our
notation the underline always symbolizes an additional last row), and Vm+1 = [Vm, vm+1].
Under the assumption that the last pole ξm is infinite, the second summand on the left-hand
side of (4) vanishes, and (5) reduces to

AVmKm = Vm+1Hm, (6)

where Km denotes the upper m×m part of Km. If all poles ξj are infinite, then (5) reduces
to the standard (polynomial) Arnoldi decomposition AVm = Vm+1Hm (or Lanczos decompo-
sition when A is Hermitian). The following discussions therefore include polynomial Krylov
methods as a special case.

3 Rational Krylov methods

In this section we review various rational Krylov methods for approximating f(A)b that have
been proposed in the literature, and relate them to each other.

3.1 The rational Arnoldi method

Let Vm ∈ CN×m be an orthonormal basis ofQm(A, b), which may for example be computed
by the rational Arnoldi algorithm discussed in the previous section. The rational Arnoldi
approximation for f(A)b from Qm(A, b) is defined as

f RA
m := Vmf(Am)V ∗mb, where Am := V ∗mAVm. (7)

The matrix Am ∈ Cm×m is often referred to as a compression of A or a matrix Rayleigh
quotient. The applicability of the rational Arnoldi method rests on the fact that f RA

m poten-
tially is a very good approximation of f(A)b even for small order m. In this case only the
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computation of a matrix function f(Am) of size m×m is required, which is small compared
to the original f(A) problem of size N ×N . As was pointed out in [41] (and also in [42] for
a variant of the rational Arnoldi algorithm), it is not necessary to compute Am = V ∗mAVm
by explicit projection provided that the last pole used in the rational Arnoldi algorithm was
ξm =∞: from the reduced rational Arnoldi decomposition (6) we find Am = HmK

−1
m . The

matrix Km is indeed invertible because Hm is an unreduced upper Hessenberg matrix and
hence both sides of (6) are of full rank m.

The rational Arnoldi approximation f RA
m enjoys several remarkable properties. First of all,

it is exact if f is a rational function represented in the rational Krylov space Qm(A, b). This
exactness property is well known for polynomial Arnoldi approximations [43–45], and gener-
alizes to the rational Krylov case (see [46] for the special case of extended Krylov subspaces,
and more generally in [38, 41]).

Lemma 3.1 (Exactness) Let Vm ∈ CN×m be an orthonormal basis of Qm(A, b), and let
Am = V ∗mAVm. Then for any rational function r̃m ∈ Pm/qm−1 we have

(VmV
∗
m)r̃m(A)b = Vmr̃m(Am)V ∗mb,

provided that r̃m(Am) is defined. In particular, if rm ∈ Pm−1/qm−1, then

rm(A)b = Vmrm(Am)V ∗mb,

i.e., the rational Arnoldi approximation for rm(A)b is exact.

P r o o f. Define q = qm−1(A)−1b . We first show by induction that

(VmV
∗
m)Ajq = VmA

j
mV
∗
mq for all j ∈ {0, 1, . . . ,m}. (8)

Assertion (8) is obviously true for j = 0. Assume that it is true for some j < m. Then by the
definition of a rational Krylov space we have VmV ∗mA

jq = Ajq , and therefore

(VmV
∗
m)Aj+1q = (VmV

∗
m)AVmV

∗
mA

jq = (VmV
∗
m)AVmA

j
mV
∗
mq = VmA

j+1
m V ∗mq ,

which establishes (8). Again from (8) we obtain by linearity

b = qm−1(A)q = Vmqm−1(Am)V ∗mq ,

or equivalently, V ∗mq = qm−1(Am)−1V ∗mb . Replacing V ∗mq in (8) completes the proof.

Remark 3.2 From Lemma 3.1 it follows that the rational Arnoldi method is closely related
to rational Gauss quadrature when approximating the scalar expression b∗f(A)b , with A
being Hermitian. Let f = r̃m · rm be the product of two rational functions r̃m ∈ Pm/qm−1

and rm ∈ Pm−1/qm−1. By the definition of a rational Krylov space we have rm(A)b =
VmV

∗
mrm(A)b , and therefore

b∗f(A)b = b∗r̃m(A)VmV
∗
mrm(A)b

= (VmV
∗
mr̃m(A)b)∗(rm(A)b)

= (Vmr̃m(Am)V ∗mb)∗(Vmrm(Am)V ∗mb)

= (V ∗mb)∗f(Am)(V ∗mb),
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6 S. Güttel: Rational Krylov approximation of matrix functions

where we have used Lemma 3.1 for the third equality. The last term is a Gauss-type approx-
imation for b∗f(A)b , being exact for all functions f ∈ P2m−1/q

2
m−1. This connection to

Gauss quadrature is well known for polynomial Krylov methods [47, 48] and has been ex-
plored in [49–51] for the rational Krylov case.

The next theorem states an interpolation property which, together with its Corollary 3.4,
is the basis for much of the available convergence analysis of the rational Arnoldi method.
Again, this result was long known for the polynomial Arnoldi method [44, 45], and later
generalized to the rational Krylov case [38, 41].

Theorem 3.3 (Interpolation) Assume that f(Am) and qm−1(Am)−1 are defined. Then
the rational function rRA

m underlying the rational Arnoldi approximation f RA
m = rRA

m (A)b
defined by (7) interpolates f at the rational Ritz values Λ(Am).

P r o o f. Define the function f̃ := fqm−1. By the definition of a matrix function there
exists a polynomial p̃m−1 ∈ Pm−1 such that f̃(Am) = p̃m−1(Am) and p̃m−1 interpolates f̃
at Λ(Am). Equivalently, the rational function p̃m−1/qm−1 = rRA

m interpolates f at Λ(Am).
By Lemma 3.1 the rational Arnoldi approximation f RA

m is exact for such functions, which
concludes the proof.

The assumption that qm−1(Am)−1 is defined is equivalent to the requirement that none of
the rational Ritz values in Λ(Am) coincides with any of the poles ξj (j = 1, . . . ,m − 1).
Since all rational Ritz values are contained in the numerical range

W(A) := {v∗Av : v ∈ CN , ‖v‖ = 1},

this requirement is necessarily satisfied if all poles stay away from this set. We will see in
Section 4 that this is naturally true for reasonable choices of poles.

The numerical range is also a convenient set for bounding the norm of f(A) and thereby
the norm of the error of a rational Arnoldi approximation. By a theorem of Crouzeix [52]
there exists a universal constant C ≤ 11.08 such that

‖f(A)‖ ≤ C‖f‖Σ, (9)

where the norm on the right is the maximum norm on a compact set Σ ⊇ W(A). With the
help of this inequality, the following near-optimality property of f RA

m can be established.
Corollary 3.4 (Near-optimality) Let f be analytic in a neighborhood of a compact set

Σ ⊇W(A). Then the rational Arnoldi approximation f RA
m defined by (7) satisfies

‖f(A)b − f RA
m ‖ ≤ 2C‖b‖ min

rm∈Pm−1/qm−1

‖f − rm‖Σ,

with a constant C ≤ 11.08. If A is Hermitian, the result holds even with C = 1 and Σ ⊇
Λ(A) ∪ Λ(Am).

P r o o f. By Lemma 3.1 we know that rm(A)b = Vmrm(Am)V ∗mb for every rational func-
tion rm ∈ Pm−1/qm−1. Thus,

‖f(A)b − f RA
m ‖ = ‖f(A)b − Vmf(Am)V ∗mb − rm(A)b + Vmrm(Am)V ∗mb‖

≤ ‖b‖ (‖f(A)− rm(A)‖+ ‖f(Am)− rm(Am)‖)
≤ 2C‖b‖ · ‖f − rm‖Σ,
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where we have used (9) for the last inequality. If A is Hermitian then so is Am, and (9)
holds with C = 1 and Σ ⊇ Λ(A). The proof is completed by taking the infimum over all
rm ∈ Pm−1/qm−1, and noting that this infimum is attained on the compact set Σ.

The near-optimality property of rational Arnoldi approximants is remarkable and deserves
some further discussion. As the error bound in Corollary 3.4 is based on the numerical
range, we will certainly not expect it to be sharp for highly nonnormal matrices. In prac-
tice one often observes that the approximation f RA

m is indeed much better than predicted by
this bound, namely extremely close to the orthogonal projection of f(A)b onto the search
spaceQm(A, b). The gap in the bound of Corollary 3.4 can be quite large even for symmetric
matrices, as we illustrate by a simple example.

Example 3.5 We consider the tridiagonal matrix

Tn =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ∈ Rn×n,

and the matrices Ã1 = T900 and Ã2 = T30 ⊕ T30, both of which are of dimension N = 900.
We now apply linear transformations to Ã1 and Ã2 such that the spectral interval of the trans-
formed matrices becomes Σ = [1, 1000], and denote these matrices as A1 and A2, respec-
tively. Note that A1 and A2 correspond to shifted and scaled finite-difference discretization
matrices of the 1D- and 2D-Laplacian, respectively. The matrix A3 is a diagonal matrix with
900 equispaced eigenvalues in Σ. We run the rational Arnoldi method for approximating
exp(−A`)b with these symmetric matrices (` = 1, 2, 3), where all poles are chosen (rather
arbitrarily) as ξj = −1, and b is a random vector of norm 1. The convergence curves are
shown in Figure 1, together with the error of the orthogonal projection of exp(−A`)b onto
Qm(A`, b), and the error bound of Corollary 3.4. Although this bound is the same for all A`,
the observed convergence differs for these matrices. Only for A1, the matrix with eigenvalues
corresponding to the 1D-Laplacian, does the convergence closely follow the error bound. The
error bounds would be sharper if, instead of working with the spectral interval Σ = W(A`),
we used the discrete sets Σ` = Λ(A`)∪Λ`,m, with Λ`,m denoting the set of m-th order ratio-
nal Ritz values associated with A`. However, these would not be very practical error bounds
as we do not want to compute eigenvalues of large matrices. On the other hand, in some cases
one has knowledge of the eigenvalue distribution of a matrix in terms of a density function
(this is the case for the above three matrices), and there exists convergence theory that gives
asymptotic bounds incorporating the fine structure of the spectrum and explaining the fast
convergence of the rational Arnoldi method seen in Figure 1. It is beyond the scope of this
paper to go into details, and we refer to [53,54], as well as to related2 work on the superlinear
convergence behavior of the CG method [55, 56].

2 The iterates of the Lanczos method for solving Ax = b with a Hermitian matrix A and zero initial guess
coincide with the polynomial Arnoldi approximations for f(A)b = A−1b .
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Fig. 1 Convergence of the rational Arnoldi method for approximating exp(−A`)b with three different
matrices A` described in Example 3.5, together with the error bound of Corollary 3.4. The dashed lines
indicate the error of the orthogonal projection of exp(−A`)b ontoQm(A`, b), and these lines are partly
overlaid by the error curves ‖ exp(−A`)b − f RA

m ‖.

3.2 The extended Krylov subspace method

A popular special case of the rational Arnoldi method is known as the extended Krylov sub-
space method, obtained by choosing the poles alternately as ξ2j = ∞ and ξ2j−1 = 0. This
method was proposed by Druskin & Knizhnerman [46], and further investigated and improved
in [57–59]. It is particularly suited for Markov functions

f(z) =

∫ 0

−∞

dγ(x)

z − x
, (10)

where γ is a (possibly signed) measure such that the integral converges absolutely for
z ∈ C \ (−∞, 0]. The computational advantage of the extended Krylov subspace method
is three-fold. First, the poles are chosen a priori and in this respect it is a black-box method.
Second, if a direct solver is applicable for solving the linear systems with A, then only one
LU factorization needs to be computed and it can be reused for all the solves in the rational
Arnoldi algorithm. Third, for certain functions the alternating poles lead to the same conver-
gence rate as can be achieved by using an asymptotically optimal single repeated pole. For
example, it is known from [46] and [59, Theorem 3.4] that for a Hermitian matrix A with
spectral interval [λmin, λmax] > 0 one has

‖f(A)b − f EK
m ‖ ≤ C

(
4
√
κ− 1

4
√
κ+ 1

)m
. C · exp

(
− 2m

4
√
κ

)
, κ =

λmax

λmin
,

where f EK
m denotes the m-th extended Krylov subspace approximation, C > 0 is a constant

independent of m, and the asymptotic upper bound denoted by . is sharp for large condi-
tion numbers κ. The same linear convergence rate can be achieved with the rational Arnoldi
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method by using the single repeated pole ξj = ξj+1 = −
√
λminλmax (see [54]), but this

choice requires knowledge of the extremal eigenvalues.
The 0-poles present in the extended Krylov subspace typically lead to “deflation” of the

eigenvalues of A closest to the origin, resulting in superlinear convergence. For example, it
was shown in [54] that the extended Krylov subspace method applied for anN×N discretiza-
tion of the 1D Laplacian actually converges superlinearly:

‖f(A)b − f EK
m ‖ . C · exp

(
−
√

8m3/2

3
√
N

)
.

It should also be noted that an extended Krylov subspace associated with a Hermitian ma-
trix A can be constructed by a short-term recurrence on “blocks” of two vectors, each orthog-
onalization involving at most the last two blocks [59], although this may add computational
complications due to loss of orthogonality of the basis vectors (see [60] for a discussion of
this effect in the polynomial Krylov case). Such a short recurrence reduces the number of
inner products in the rational Arnoldi algorithm, but still all Krylov basis vectors need to be
stored in Vm for forming f EK

m = Vmf(Am)V ∗mb .

3.3 The shift-and-invert Arnoldi method

The shift-and-invert Arnoldi method for the approximation of matrix functions was introduced
independently by Moret & Novati [61] (under the name of the Arnoldi restricted denominator
method) and van den Eshof & Hochbruck [62]. The idea is to run the polynomial Arnoldi
algorithm with the spectrally transformed matrix (A − ξI)−1, ξ 6∈ Λ(A). This yields a
polynomial Arnoldi decomposition

(A− ξI)−1Vm = Vm+1Hm, (11)

whereHm is an (m+1)×m unreduced upper Hessenberg matrix, and Vm+1 = [Vm, vm+1] is
an orthonormal basis of Qm+1(A, b) = Km+1((A− ξI)−1, b), a rational Krylov space with
all poles concentrated at ξ. The shift-and-invert Arnoldi approximation for f(A)b is defined
as

f SI
m := Vmf(Sm)V ∗mb, where Sm := H−1

m + ξIm. (12)

This approximation can be easily related to the rational Arnoldi approximation f RA
m : left-

multiplication of (11) by V ∗m(A− ξI), and separation of the term V ∗mAVm yields

V ∗mAVm = H−1
m + ξIm − V ∗mAvm+1hm+1,meTmH

−1
m

= Sm − V ∗mAvm+1hm+1,meTmH
−1
m

=: Sm −Mm,

which shows that Sm is a rank-1 modification of Am = V ∗mAVm. Therefore f SI
m is not

a rational Arnoldi approximation for f(A)b from Qm(A, b). However, with the function
f̂(ẑ) := f(ẑ−1 + ξ) we have f SI

m = Vmf̂(Hm)V ∗mb , hence f SI
m is a polynomial Arnoldi

approximation for f̂((A−ξI)−1)b = f(A)b associated with the Arnoldi decomposition (11).
This connection allows us to conclude that there exists an interpolation characterization of the
shift-and-invert approximation similar to Theorem 3.3 (see [62]).
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10 S. Güttel: Rational Krylov approximation of matrix functions

Theorem 3.6 The rational function rSI
m(z) = pSI

m−1(z)/(z − ξ)m−1 underlying the shift-
and-invert Arnoldi approximation f SI

m = rSI
m(A)b defined by (12) interpolates f at the points

in Λ(Sm).
A near-optimality result similar to Corollary 3.4 can also be given.
Corollary 3.7 Let f be analytic in a neighborhood of a compact set Σ ⊇W(A). Then the

shift-and-invert Arnoldi approximation f SI
m defined by (12) satisfies

‖f(A)b − f SI
m ‖ ≤ 2C‖b‖ min

pm−1∈Pm−1

‖f(z)− pm−1(z)/(z − ξ)m−1‖Σ,

with a constant C ≤ 11.08.
A computational advantage of the shift-and-invert Arnoldi method appears when A − ξI

is Hermitian, because in this case Hm is a tridiagonal symmetric matrix and the basis Vm can
be computed via the Lanczos three-term recurrence. However, the full basis Vm still needs to
be stored for forming the approximation f SI

m in (12).

3.4 The generalized Leja point method

A nonorthogonal rational Krylov method, proposed in [38] (under the name PAIN, which
stands for poles and interpolation nodes), is given by the iteration

v1 = b/‖b‖,
αjvj+1 = (I −A/ξj)−1(A− σjI)vj ,

the numbers αj , σj ∈ C being arbitrary for the moment, except that we require αj 6= 0 and
σj 6= ξj for all j = 1, . . . ,m. It is easily seen that this iteration generates a decomposition
AVm+1Km = Vm+1Hm, where Vm+1 = [v1, . . . , vm+1] and

Km =



1
α1/ξ1 1

α2/ξ2
. . .
. . . 1

αm/ξm

 and Hm =



σ1

α1 σ2

α2
. . .
. . . σm

αm

 .

It can be shown (see [38, Thm. 5.8]) that the associated generalized Leja point approximation

f GL
m := Vmf(HmK

−1
m )‖b‖e1 (14)

satisfies f GL
m = rGL

m (A)b with a rational function rGL
m having poles ξ1, . . . , ξm−1 and in-

terpolating f at the points σ1, . . . , σm. Therefore this approximation method corresponds to
rational interpolation of f(A)b with preassigned poles and interpolation nodes. Compared
with methods based on orthogonal Krylov bases, it has the advantage that the full matrix Vm
does not need to be stored for computing f GL

m ; instead the approximations can be updated
using only the last Krylov basis vector, f GL

m = f GL
m−1 + cmvm, where cm denotes the last

entry of the vector f(HmK
−1
m )‖b‖e1.

In the polynomial case when all ξj =∞, the generalized Leja point method reduces to the
so-called real Leja point method [63–65]. In the rational case, the points {(σj , ξj)} should
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be chosen as generalized Leja points, hence the name of the method. We will discuss these
points in the next section. It was also shown in [38] that the generalized Leja point method can
be seen as a restarted rational Krylov method for matrix functions (and thereby generalizes
certain polynomial restarted Krylov methods, see [66–69]).

4 Pole selection

Every rational Krylov approximation is of the form fm = rm(A)b , with a rational func-
tion rm ∈ Pm−1/qm−1. It is therefore not surprising that the pole selection for rational
Krylov methods is closely connected to rational approximation of the function f . Indeed, by
Crouzeix’s inequality (9) we know that

‖f(A)b − fm‖ ≤ C‖b‖ ‖f − rm‖Σ,

where C ≤ 11.08 and Σ ⊇ W(A). In Example 3.5 we have demonstrated that such a bound
based on the numerical range may be crude, but for convenience and simplicity we will rely on
this universal bound. The aim for a small approximation error ‖f(A)b−fm‖ then leads to the
problem of uniform rational approximation of f on Σ. For the rational Arnoldi approximation
f RA
m , which by Corollary 3.4 is a near-optimal extraction from Qm(A, b), the matter further

reduces to the problem of finding an optimal denominator qm−1, or equivalently, an optimal
search space Qm(A, b).

In many applications, the function f = fτ also depends on a parameter τ from a parameter
set T , and consequently the same is true for the approximations f τm ≈ fτ (A)b . This needs
to be taken into account when optimizing the poles of a rational Krylov space, which should
depend on T but not on each single τ ∈ T . Moreover, it is sometimes necessary to restrict
the poles ξj to a pole set Ξ. For example, if complex arithmetic needs to be avoided in the
rational Arnoldi algorithm, Ξ = R ∪ {∞} is an appropriate restriction.

Asymptotically optimal rational approximants can be constructed by interpolation, using
tools from logarithmic potential theory. We will keep the amount of theory to a minimum
here, and refer the interested reader to [70–72]. Let Σ and Ξ be closed subsets of C, both of
nonzero logarithmic capacity (a property which holds for all sets we consider in the following)
and of positive distance. The pair (Σ,Ξ) is called a condenser, and associated with it is a
positive number cap(Σ,Ξ) called the condenser capacity [73,74]. Let us consider a sequence
of rational nodal functions

sm(z) =
(z − σ1) · · · (z − σm)

(1− z/ξ1) · · · (1− z/ξm)
, m = 1, 2, . . . (15)

with zeros σj ∈ Σ and poles ξj ∈ Ξ. Our aim is to make these rational functions asymp-
totically as large as possible on the set Ξ, and as small as possible on Σ. It can be proven
(see [74, 75]) that for any sequence of rational functions sm of the form (15) one has

lim sup
m→∞

(
supz∈Σ |sm(z)|
infz∈Ξ |sm(z)|

)1/m

≥ e−1/ cap(Σ,Ξ). (16)

The problem of finding a sequence {sm} such that equality holds in (16) is called the general-
ized Zolotarev problem for the condenser (Σ,Ξ), because it reduces to the third of Zolotarev’s
classical problems if Σ and Ξ are real intervals [74, 76, 77].
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12 S. Güttel: Rational Krylov approximation of matrix functions

The problem of determining the capacity of an arbitrary condenser (Σ,Ξ) is nontrivial.
The situation simplifies if both Σ and Ξ are simply connected sets. Then by the Riemann
mapping theorem (see [78, Thm. 5.10h]) there exists a bijective function Φ that conformally
maps the complement of Σ ∪ Ξ onto a circular annulus AR := {w : 1 < |w| < R}. The
number R is called the Riemann modulus of AR and it satisfies R−1 = e−1/cap(Σ,Ξ).

A practical method for obtaining asymptotically optimal rational functions for the
Zolotarev problem is the following greedy algorithm: starting with points σ1 ∈ Σ and ξ1 ∈ Ξ
of minimal distance, the points σj+1 ∈ Σ and ξj+1 ∈ Ξ are determined recursively such that
with sj defined in (15) the conditions

max
z∈Σ
|sj(z)| = |sj(σj+1)| and min

z∈Ξ
|sj(z)| = |sj(ξj+1)|

are satisfied. The points {(σj , ξj)} are called generalized Leja points [79]. The connection
of the sequence {sm} with rational interpolation is now easily explained. Assume that the
function f can be represented by a Cauchy-type integral over a contour Γ winding around Σ.
Then by the Walsh–Hermite formula, the error of a rational function rm with poles ξ1, . . . , ξm
that interpolates f at the nodes σ1, . . . , σm is given by

f(z)− rm(z) =
1

2πi

∫
Γ

sm(z)

sm(ζ)

f(ζ)

ζ − z
dζ, z ∈ Σ.

The uniform approximation error can be bounded as

‖f − rm‖Σ ≤ D
maxz∈Σ |sm(z)|
minζ∈Γ |sm(ζ)|

,

where D = D(f,Γ) is a constant independent of m. In conjunction with (16) we obtain

lim sup
m→∞

‖f − rm‖1/mΣ ≤ e−1/ cap(Σ,Γ) = R−1, (17)

provided the nodes σj and poles ξj are asymptotically distributed like generalized Leja points
(or more generally, distributed according to the so-called equilibrium measure µ∗) on the
condenser (Σ,Γ). This suggests that such points are reasonable nodes and poles for rational
interpolation.

Remark 4.1 It is interesting to note that a best uniform rational approximation r∗m of
degree m to f on Σ converges at most twice as fast as rm in (17). More precisely,

lim inf
m→∞

‖f − r∗m‖
1/m
Σ ≥ e−2/ cap(Σ,Γ) (18)

(see [80–82]). This result is sharp in the sense that equality holds in (18) for certain classes of
analytic functions whose region of analyticity contains Σ and is bounded by Γ, for example
Markov functions [83] or functions with a finite number of algebraic branch points [84]. The
poles of best uniform rational approximants are typically free, i.e., they all alter when m is
increased tom+1, which does not allow for the construction of nested rational Krylov spaces
which achieve convergence like (18).

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 13

In the following subsections we will relate the above results to various approaches for com-
puting asymptotically optimal poles of a rational Krylov space, depending on the function f
(or fτ with a parameter τ ∈ T ) and the configuration of Σ and Ξ. The reader will find that we
only consider real intervals for Σ, which means that A should be Hermitian. An analysis for
more general Σ is often possible (see [41]), but the corresponding conformal maps become
more complicated.

4.1 Resolvent function

We first consider the uniform approximation of fτ (z) = (z − τ)−1 on a closed set Σ ⊂ C
for (frequency) parameters τ ∈ T , by rational functions having their poles in a set Ξ. Closely
related optimization problems arise in the parameter selection for the ADI method [85–88],
and in model order reduction problems in the frequency domain, where the selected poles are
typically called expansion or interpolation points (which is different from the nomenclature
used here; see [5, 89, 90]).

Unbounded Σ = [0,+∞], bounded T = ±i[ωmin, ωmax] symmetric to R, Ξ = T : This
problem was considered in [7] and therein related to the classical Zolotarev problem for
the weighted best rational approximation of the inverse square root on a positive interval.
From this relation the authors deduced the capacity of (Σ,Ξ = T ) and the convergence
rate [7, formulas (3.10) and (3.15)]

R = exp

(
π

2

K(δ)

K ′(δ)

)
' exp

(
π2

4 log(4/δ)

)
, δ =

√
ωmin

ωmax
,

with the complete elliptic integral of the first kind and its complement defined as

K(κ) =

∫ 1

0

dt√
(1− t2)(1− κ2t2)

, K ′(κ) = K(
√

1− κ2).

The asymptotic estimate denoted by ' is precise for small δ. Asymptotically optimal
interpolation nodes and poles can be obtained by discretization of the signed equilibrium
measure for (Σ,Ξ), or as explained above, by using generalized Leja points. The re-
sulting poles ξj ∈ Ξ lie on the imaginary axis, asymptotically distributed with a density
symmetric to the real axis. Note that if bothA and b are real, and poles occur in complex
conjugate pairs ξ2j = ξ2j−1 (j = 1, 2, . . .), then this can be exploited such that the num-
ber of complex-shifted linear systems to be solved in the rational Arnoldi algorithm is
only half the number of iterations (see also [91, 92] for computational aspects of solving
complex-shifted linear systems).

Unbounded Σ = [0,+∞], bounded T = i[ωmin, ωmax], and poles on Ξ = T : The com-
plement of the condenser (Σ, T ) = ([0,+∞], i[ωmin, ωmax]) is doubly connected and
therefore possesses a conformal map onto an annulus. Unfortunately, its nonsymmetric
geometry makes this condenser more difficult to analyze. We have numerical evidence
that the associated Riemann modulus may be

R = exp

(
π2

4

K(δ)

K ′(δ)

)
' exp

(
π3

8 log(4/δ)

)
, δ =

√
ωmin

ωmax
.
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14 S. Güttel: Rational Krylov approximation of matrix functions

Unbounded Σ = [0,+∞], bounded T = i[ωmin, ωmax], and real poles in Ξ = (−∞, 0):
For real data A and b it is favorable to have real poles ξj in order to avoid complex
arithmetic in the linear system solves. For bounded T and unbounded Σ the following
construction was proposed in [38, Section 7.5]. Denote by R1(τ, ξ) > 1 the convergence
rate for the approximation of fτ (z) = (z − τ)−1 from a rational Krylov space with all
poles being concentrated at a finite pole ξ. The quantity R1(τ, ξ) can be calculated via
a polynomial approximation problem in the transformed variable ẑ = (z − ξ)−1. For
example, if Σ = [0,+∞], T = i[ωmin, ωmax] and ξ < 0, we have

R1(τ, ξ) =

(
1 +

√
8c3/4 + 4c1/2 +

√
8c1/4

1 + c

)1/2

, c = |τ |2/ξ2.

By considering p cyclically repeated poles ξ1, . . . , ξp, one can then show that the geo-
metric mean R(τ) = (R1(τ, ξ1) · · ·R1(τ, ξp))

1/p is the convergence rate for the approx-
imation of fτ from a rational Krylov space built with these cyclic poles. The poles ξj
can be optimized by maximizing the worst-case convergence rate minτ∈T R(τ).

Bounded Σ = [λmin, λmax] > 0, unbounded T = iR, real poles on Ξ = −Σ: It would
be natural to consider generalized Leja points for the condenser (Σ, T ), that is, to place
the poles of asymptotically optimal rational functions on the imaginary axis. Via con-
formal mapping it was shown in [23, formula (4.8)] that the associated convergence rate
given by the Riemann modulus would be

R = exp

(
π

4

K ′(µ)

K(µ)

)
' exp

(
π2

4 log(2/δ)

)
, µ =

(
1− δ
1 + δ

)2

, δ =

√
λmin

λmax
. (19)

It was discovered in [93] that rational functions constructed for the symmetric condenser
(Σ,−Σ) actually achieve the same convergence rate on (Σ, T ). An intuitive explanation
is the following: if a rational function sm has real zeros σ1, . . . , σm ∈ Σ and “mirrored”
poles ξj = −σj , then the quotient sm(z)/sm(−z) attains modulus 1 on the imaginary
axis. Indeed, the condenser (Σ,−Σ) is of half the capacity of (Σ, T ). One can therefore
construct generalized Leja points for the former condenser, with poles in Ξ = −Σ, and
use these poles for the construction of an asymptotically optimal rational Krylov space.

It should be noted that poles and interpolation nodes symmetric to the imaginary axis
arise in the context of optimalH2 model order reduction, and the corresponding optimal
points can be constructed iteratively by repeated runs of the rational Arnoldi algorithm,
with the poles taken as “mirrored” rational Ritz values of the previous run (iterative
rational Krylov algorithm, see [94]).

Bounded Σ = [λmin, λmax] > 0, unbounded T = iR, and adaptive poles on Ξ = −Σ:
An adaptive approach for choosing the poles of a rational Arnoldi approximation to
the resolvent function has been proposed by Druskin & Simoncini [95]. It is based
on the interpolation property of the rational Arnoldi method, stated in Theorem 3.3.
As at iteration m of this method the poles ξ1, . . . , ξm have already been chosen, and
the interpolation nodes σ1, . . . , σm are explicitly known to be the rational Ritz values
Λ(Am), the corresponding nodal function sm of (15) is also known. The next pole ξm+1
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is then selected as ξm+1 = arg minx∈Ξ |sm(x)|, aiming to make |sm(x)| uniformly
large on Ξ = −Σ. Numerical experiments indicate that this results in a rational Arnoldi
method with convergence rate R at least as great as (19).

4.2 Exponential function

We will now focus on the choice of optimal poles when approximating exp(−τA)b for a
(time) parameter interval [τmin, τmax] > 0. We assume that the numerical range W(A) ⊆ Σ
is contained in the right half-plane (and we denote this as Σ ≥ 0).

Unbounded Σ ≥ 0, a single parameter T = {τ}, and a single repeated pole ξ < 0:
Due to their computational advantages, rational approximations to e−z on Σ = [0,+∞]
with real poles have been studied extensively in the literature, see [96–99]. In particular,
it is known that the best uniform rational approximation of type [m/m] has a single pole
ξ < 0 of order m [100], and ξ ∼ −m/

√
2 as m → ∞ [101]. The case of choosing a

single optimal pole ξ is relevant in the context of the shift-and-invert Arnoldi method,
and this problem has been studied extensively for Hermitian and non-Hermitian A
(see [62, 102] and [41, 61, 103, 104], respectively).

Because Σ can be assumed to be unbounded as long as it is contained in the right half-
plane and only contains a finite subinterval of the imaginary axis (where ez is oscilla-
tory), rational Krylov methods for the matrix exponential are often said to have mesh-
independent convergence. If A is the discretization of a spatial differential operator, then
the number of iterations required by a rational Krylov method to achieve a prescribed
error tolerance will be independent of the mesh width. On the other hand, in a practical
situation one typically desires a more accurate result when refining the mesh, so that the
number of required iterations actually increases.

Bounded Σ = [λmin, λmax] > 0, parameters T ⊆ [0,+∞), and poles on Ξ = −Σ:
This case was considered by Druskin, Knizhnerman & Zaslavsky [23]. The key idea is
to exploit the inverse Fourier representation of the exponential function, namely

e−τz =
1

2πi

∫ i∞

−i∞

e−τz

ζ − z
dζ, z > 0, τ ≥ 0.

Using this formula in the rational Arnoldi approximation f τm = Vme
−τAmV ∗mb one

obtains

e−τAb − f τm =
1

2πi

∫ i∞

−i∞
e−τζ

(
(ζI −A)−1b − Vm(ζIm −Am)−1V ∗mb

)
dζ

=
1

2πi

∫ i∞

−i∞
e−τz

(
rζ(A)b − rζm(A)b

)
dζ,

where rζm(z) = pζm−1(z)/qm−1(z) interpolates the resolvent function rζ(z) := (ζ −
z)−1 at the rational Ritz values Λ(Am). Apparently, the aim is to make the error rζ−rζm
as small as possible on Σ = [λmin, λmax] for all “parameters” ζ ∈ iR. As described
in Subsection 4.1, this can be done by solving a Zolotarev problem on the condenser
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16 S. Güttel: Rational Krylov approximation of matrix functions

(Σ,−Σ). Using the near-optimality of the rational Arnoldi method and the Plancherel
identity one can indeed show that

lim sup
m→∞

‖fτ (A)b − f τm‖1/m ≤ R−1 for all τ ∈ T, (20)

with R given in (19), provided that the poles of the rational Krylov space are distributed
on Ξ = −Σ according to the equilibrium measure of the condenser (Σ,−Σ), see [23].
Note that the rate R deteriorates with a growing condition number λmax/λmin, but is
independent of the length of the time interval T . Hence this approach should be preferred
to approaches for unbounded Σ if the condition number ofA is moderate and T is a large
interval.

Bounded Σ = [λmin, λmax] > 0, parameters T ⊆ [0,+∞), adaptive poles on Ξ = −Σ:
As is the case for the resolvent function, an adaptive choice of poles is also possible for
the matrix exponential function, see [24]. Also here one aims to make the nodal function
sm of (15) uniformly large on Ξ = −Σ by choosing ξm+1 = arg minx∈Ξ |sm(x)| at
each iteration of the rational Arnoldi method.

Example 4.2 We consider the computation of exp(−τA1)b with the matrix A1 and vec-
tor b from Example 3.5. Recall that Σ = [1, 1000]. The time interval is T = [10−4, 1] and
as poles for the rational Krylov space we use generalized Leja points on the plate −Σ of the
condenser (−Σ,Σ). On the left of Figure 2 we show the convergence of the rational Arnoldi
method for 17 logspaced time parameters τ ∈ T , together with the expected convergence
slope given by (20) (and (19)). Note that we have approximated all exp(−τA1)b from the
same rational Krylov space, which has been constructed only once, and we could use this
space to cheaply extract approximations for much more than 17 time parameters in a larger
time interval. On the right we plot level lines of the rational nodal function |s20|, together
with the rational Ritz values of order 20 and the first 19 poles of the rational Krylov space.
This plot confirms that |sm| is uniformly small on Σ = [1, 1000] (relative to |sm| on −Σ) and
approximately constant on the imaginary axis.

Remark 4.3 Rational Krylov methods can be generalized to problems where both the ma-
trix A = A(τ) and/or the vector b = b(τ) may be parameter-dependent. The corresponding
methods go under the names nonlinear Krylov subspace method [105, 106], interpolatory
projection method [107, 108], or parameter-dependent Krylov subspace method [109]. Such
methods can be applied, e.g., for the solution of general time-invariant dynamical systems, and
a potential-theoretic approach to pole selection for such problems has been given in [110].

4.3 Markov functions

We finally discuss the selection of optimal poles for rational Krylov methods when approxi-
mating Markov functions f defined by (10). Such functions are analytic in the complex plane
with the exception of the set Γ = [−∞, 0], the support of the generating measure γ. It is there-
fore natural to take Ξ = Γ as the set of allowed poles. The choice of alternating poles 0 and∞
used in the extended Krylov subspace method has already been discussed in Subsection 3.2.
Asymptotically optimal poles for the rational Arnoldi method have been studied by Becker-
mann & Reichel [41]. These authors give upper and lower bounds for the rational Arnoldi
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Fig. 2 Left: Convergence of the rational Arnoldi method for approximating exp(−τA1)b for 17 pa-
rameters τ ∈ [10−4, 1]. The dashed line shows the expected convergence slope given by (20) (and (19)).
Right: Level lines of the rational nodal function |s20|, together with the rational Ritz values of order 20
on Σ = [1, 1000] (red +) and the 19 poles of the associated rational Krylov space on −Σ (blue ×).

approximation error using techniques based on the Faber transform, and relate their results to
work by Hale, Higham & Trefethen [36], who computed explicit rational approximants for f
via Talbot quadrature formulas.

In the following we consider the approximation of f(A)b for a Hermitian matrix A hav-
ing eigenvalues in Σ = [λmin, λmax] > 0. It can be shown that the condenser (Σ,Ξ) =
([λmin, λmax], [−∞, 0]) has Riemann modulus

R = exp

(
π

2

K ′(µ)

K(µ)

)
' exp

(
π2

2 log(4/δ)

)
, µ =

1− δ
1 + δ

, δ =

√
λmin

λmax
. (21)

(See [36, Fig. 3] for a geometrical sketch of the conformal map of the complement of Σ ∪ Ξ
onto the annulus AR.) As explained at the beginning of this section, rational interpolation
of f with generalized Leja points as interpolation nodes and poles on (Σ,Ξ) will converge
at the rate R. Also the rational Arnoldi method will converge at least at this rate due to its
near-optimality. We confirm this numerically in the left of Figure 3, showing the convergence
of the generalized Leja point and the (standard) rational Arnoldi methods for approximating
f(A2)b with the “impedance function”

f(z) = z−1/2 =

∫ 0

−∞

1

z − x
dx

π
√
−x

,

and the matrix A2 and vector b of Example 3.5. In both cases, the selected poles are general-
ized Leja points. On the right of Figure 3 we show the relative error curves |1 − x1/2rm(x)|
of the rational interpolants rRA

m and rGL
m underlying both approximations, for m = 15. These
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Fig. 3 Left: Convergence of various rational Krylov methods for approximating A−1/2
2 b for a ma-

trix A2 with spectral interval Σ = [1, 1000]. The dashed line shows the expected convergence slope
given by (21). Right: Relative error curves |1 − x1/2rm(x)| of the rational functions rm underlying
the rational Krylov approximants of order m = 15. The grey vertical lines indicate the positions of the
eigenvalues of A2.

are rational functions of type [14/14]. Note how the error curve for rGL
m is uniformly small on

the spectral interval Σ, and the error of rRA
m is less uniform but almost zero very close to some

of the left-most eigenvalues of A (indicated by the vertical grey lines). This is an indication
of spectral adaption of the rational Arnoldi method.

We also show the convergence curve for the adaptive rational Arnoldi method proposed
in [111]. This method does not require the explicit computation of optimal poles; instead
near-optimal poles are determined in the course of iterating. This method can therefore be
seen as a black-box method. Finally, we show the convergence of rational Arnoldi where
we have supplied the poles of Zolotarev’s best rational approximation for z−1/2 of degree
14 to the method (in Leja ordering, see [112] for more on best rational approximants). Note
how the approximation error suddenly drops at iteration m = 15, which is when all 14 poles
are present in the rational Krylov space. An accuracy of about 10−13 is achieved with these
optimal poles about twice as fast as with the generalized Leja points (see Figure 3, left). This
is Remark 4.1 in action: rational interpolants with free poles may converge about twice as fast
as generalized Leja interpolants. The relative error curve of the Zolotarev rational function
shows the well-known equioscillation property indicating optimality.
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[38] S. Güttel, Rational Krylov Methods for Operator Functions, PhD thesis, Institut für Numerische
Mathematik und Optimierung der Technischen Universität Bergakademie Freiberg, 2010.

[39] A. Ruhe, Linear Algebra Appl. 58, 391–405 (1984).
[40] A. Ruhe, IMA Vol. Math. Appl. 60, 149–164 (1994).
[41] B. Beckermann and L. Reichel, SIAM J. Numer. Anal. 47, 3849–3883 (2009).
[42] K. Deckers and A. Bultheel, Rational Krylov sequences and orthogonal rational functions, Tech.

Rep. TW499, Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Bel-
gium, 2007.

[43] V. L. Druskin and L. A. Knizhnerman, USSR Comput. Maths. Math. Phys. 29, 112–121 (1989).
[44] T. Ericsson, Computing functions of matrices using Krylov subspace methods, Technical Re-

port, Chalmers University of Technology, Department of Computer Science, Göteborg, Sweden,
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[69] M. Eiermann, O. G. Ernst, and S. Güttel, SIAM J. Matrix Anal. Appl. 32, 621–641 (2011),

SIAM J. Matrix Anal. Appl.
[70] T. Ransford, Potential Theory in the Complex Plane (Cambridge University Press, Cambridge,

UK, 1995).
[71] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields (Springer-Verlag, Berlin,

1997).

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 21

[72] E. Levin and E. B. Saff, Potential theoretic tools in polynomial and rational approximation, in:
Harmonic Analysis and Rational Approximation, edited by J.-D. Fournier et al., Lecture Notes
in Control and Information Sciences Vol. 327 (Springer-Verlag, Berlin, 2006), pp. 71–94.

[73] T. Bagby, J. Math. Mech. 17, 315–329 (1967).
[74] A. A. Gonchar, Math. USSR Sb. 7, 623–635 (1969).
[75] A. L. Levin and E. B. Saff, Constr. Approx. 10, 235–273 (1994).
[76] E. I. Zolotarev, Zap. Imp. Akad. Nauk St. Petersburg 30, 1–59 (1877), In Russian.
[77] J. Todd, Applications of transformation theory: A legacy from Zolotarev (1847–1878), in: Ap-

proximation Theory and Spline Functions, edited by S. P. Singh (D. Reidel Publishing, Dor-
drecht, Netherlands, 1984), pp. 207–245.

[78] P. Henrici, Applied and Computational Complex Analysis, Volume 1 (John Wiley & Sons, New
York, 1988).

[79] T. Bagby, Duke Math. J. 36, 95–104 (1969).
[80] O. G. Parfenov, Math. USSR Sb. 59, 497–514 (1988).
[81] V. A. Prokhorov, Sb. Math. 184, 3–32 (1993).
[82] V. A. Prokhorov, J. Approx. Theory 133, 284–296 (2005).
[83] A. A. Gonchar, Math. USSR Sb. 34, 131–145 (1978).
[84] H. Stahl, General convergence results for rational approximants, in: Approximation Theory VI,

edited by C. K. Chui, L. L. Schumaker, and J. D. Ward (Academic Press, Boston, MA, 1989),
pp. 605–634.

[85] V. I. Lebedev, USSR Comput. Maths. Math. Phys. 17, 58–76 (1977).
[86] N. S. Ellner and E. L. Wachspress, SIAM J. Numer. Anal. 28, 859–870 (1991).
[87] N. Levenberg and L. Reichel, Numer. Math. 66, 215–233 (1993).
[88] G. Starke, SIAM J. Numer. Anal. 28, 1431–1445 (1991).
[89] Z. Bai, Appl. Numer. Math. 43, 9–44 (2002).
[90] R. W. Freund, Acta Numer. 12, 267–319 (2003).
[91] A. Ruhe, BIT 34, 165–176 (1994).
[92] O. Axelsson and A. Kucherov, Numer. Linear Algebra Appl. 7, 197–218 (2000).
[93] B. Le Bailly and J. P. Thiran, SIAM J. Numer. Anal. 38, 1409–1424 (2000).
[94] S. Gugercin, A. C. Antoulas, and C. Beattie, SIAM J. Matrix Anal. Appl. 30, 609–638 (2008).
[95] V. Druskin and V. Simoncini, Systems & Control Letters 60, 546–560 (2011).
[96] E. B. Saff, A. Schönhage, and R. S. Varga, Numer. Math. 25, 307–322 (1976).
[97] T. C. Y. Lau, BIT 17, 191–199 (1977).
[98] S. P. Nørsett and A. Wolfbrandt, BIT 17, 200–208 (1977).
[99] S. M. Serbin, SIAM J. Sci. Stat. Comput. 13, 449–458 (1992).

[100] P. B. Borwein, J. Approx. Theory 38, 279–283 (1983).
[101] J. E. Andersson, J. Approx. Theory 32, 85–95 (1981).
[102] M. Popolizio and V. Simoncini, SIAM J. Matrix Anal. Appl. 30, 657–683 (2008).
[103] V. Grimm, BIT (2011).
[104] P. Novati, SIAM J. Matrix Anal. Appl. 32, 1537–1558 (2011).
[105] H. Voss, BIT Numer. Math. 44, 387–401 (2004).
[106] E. Jarlebring and H. Voss, Appl. Math. 50, 543–554 (2005).
[107] C. Beattie and S. Gugercin, Systems & Control Letters 58, 225–232 (2009).
[108] U. Baur, C. A. Beattie, P. Benner, and S. Gugercin, SIAM J. Sci. Comput. 33, 2489–2518

(2011).
[109] M. Zaslavsky and V. Druskin, J. Comput. Phys. 229, 4831–4839 (2010).
[110] V. Druskin and M. Zaslavsky, Linear Algebra Appl. 436, 38833903 (2012).
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