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Abstract. Padé approximation is considered from the point of view of robust methods of
numerical linear algebra, in particular the singular value decomposition. This leads to an algorithm
for practical computation that bypasses most problems of solution of nearly-singular systems and
spurious pole-zero pairs caused by rounding errors; a Matlab code is provided. The success of this
algorithm suggests that there might be variants of Padé approximation that would be pointwise
convergent as the degrees of the numerator and denominator increase to ∞, unlike traditional Padé
approximants, which converge only in measure or capacity.
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1. Introduction. Padé approximants, like rational approximants more gener-
ally, are well known to be fragile. One complication is that degeneracies may occur
in which the numerator and denominator have less than the allowed degree, which
leads to several entries in the Padé table being identical, some of them matching
the Taylor series of the function being approximated to less than the expected order.
Another complication is that even in theory, in the absence of rounding errors on a
computer, Padé approximants are subject to the appearance of seemingly spurious
pole-zero pairs or “Froissart doublets” in arbitrary locations that prevent pointwise
convergence of the kind one might hope for. When rounding errors or other forms of
noise are brought into the picture, such anomalies become almost ubiquitous.

In this paper we shall propose a theoretical variation on Padé approximation,
and a corresponding numerical algorithm, that go a good way toward eliminating
these anomalies. Philosophically speaking, our approach is one of regularization of
an ill-posed problem, and perhaps it is no surprise that it relies upon the singular
value decomposition (SVD). The reason Padé approximation is ill-posed is that it is
related to analytic continuation, since the aim is typically to gain information about
a function in a region of the complex plane based on information at a single point.

This paper is an outgrowth of earlier work with Pachón, which proposed an al-
gorithm for robust rational interpolation in roots of unity [16]. The present problem
is a limiting case in which the points of interpolation degenerate to a single point.
Here one can take advantage of the exceptionally clean theory of square blocks of
degeneracies in the Padé table. Our algorithm runs in standard floating point com-
puter arithmetic and treats the mathematically classical problem of computing the
type (m,n) Padé approximant from data given as a sequence of m + n + 1 Taylor
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2 P. GONNET, S. GÜTTEL, AND L. N. TREFETHEN

coefficients. This is in contrast to related algorithms in the signal processing and
model reduction literatures, mentioned in the discussion at the end, which attempt
to extract low-rank signals from potentially much longer sequences of noisy data.

2. Basic algorithm: Padé approximation in exact arithmetic. Let f be
a function analytic in a neighborhood of z = 0 with Taylor series

f(z) = c0 + c1z + c2z
2 + · · · ;

alternatively, f could be a formal power series. Given n ≥ 0, let Pn denote the
set of polynomials of degree at most n, and given m ≥ 0 and n ≥ 0, let Rmn be
the set of rational functions of type (m,n), that is, functions that can be written as
quotients p/q with p ∈ Pm and q ∈ Pn. If µ ≤ m and ν ≤ n denote the smallest
integers such that r ∈ Rµν , then we say that r is of exact type (µ, ν) and has defect
δ = min{m− µ, n− ν} ≥ 0 with respect to Rmn. (In the special case r = 0 we define
µ = −∞, ν = 0.) The type (m,n) Padé approximant to f is the function rmn ∈ Rmn

whose Taylor series at z = 0 matches that of f as far as possible:

rmn(z)− f(z) = O(zmaximum).(2.1)

It is known that rmn exists and is unique and has the following characterization: if
r ∈ Rmn has defect δ with respect to Rmn, then r = rmn if and only if

r(z)− f(z) = O(zm+n+1−δ).(2.2)

Here the “big O” notation has its usual meaning: the first nonzero term in the Taylor
series of r(z) − f(z) is Czk for some k ≥ m + n + 1 − δ. If δ = 0, then p and q are
uniquely determined up to a scale factor, whereas if δ > 0, then p and q are only
determined up to a scale factor if we make the additional assumption that they have
degrees µ and ν, or equivalently, that they have no common roots. For extensive
information about Padé approximation, see the book by Baker and Graves-Morris [2].
However, that monograph uses an alternative definition according to which a Padé
approximant only exists if f can be matched to order zm+n+1 or further, and in fact
the present paper is mathematically closer to the landmark review of Gragg [17],
which uses the definition (2.1). For historical developments, see [6].

Equation (2.1) is nonlinear, but multiplying through by the denominator gives
the linear condition

p(z) = f(z)q(z) +O(zmaximum).(2.3)

By itself, this condition is vacuous, since matching to all orders could be achieved by
taking p and q identically zero. The condition becomes meaningful when q is required
to satisfy q 6≡ 0. With this requirement, it is known that the matching condition can
always be satisfied through degree m+ n or higher,

p(z) = f(z)q(z) +O(zm+n+1),(2.4)

as we shall confirm after (2.8).
Finding p and q to satisfy (2.4) is a linear algebra problem. Suppose a and b

are (m + 1)- and (n + 1)-vectors of coefficients of polynomials p ∈ Pm and q ∈ Pn,
respectively,

a =




a0
a1
...

am


 , b =




b0
b1
...
bn


 ,
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p(z) =
m∑

k=0

akz
k, q(z) =

n∑

k=0

bkz
k.

Then (2.4) can be written in matrix form, and it is here that our treatment of Padé
approximation begins to depart from the usual. Usually one normalizes by a coefficient
condition such as b0 = 1, whereupon what remains in (2.4) is a system of linear
equations that may be highly ill-conditioned or singular. Instead, following [16], we
shall normalize by the condition

‖b‖ = 1,(2.5)

where ‖ · ‖ is the vector 2-norm. This normalization will help to eliminate problems
of singularity and ill-conditioning.

If m ≥ n, equation (2.4) takes the Toeplitz form




a0

a1
...
an
...

am

am+1

...
am+n




=




c0

c1 c0
...

...
. . .

cn cn−1 . . . c0
...

...
...

cm cm−1 . . . cm−n

cm+1 cm . . . cm+1−n

...
...

. . .
...

cm+n cm+n−1 . . . cm







b0
b1
...
bn


(2.6)

coupled with the condition

am+1 = · · · = am+n = 0.(2.7)

In other words, bmust be a (right) null vector of the n×(n+1) matrix displayed below
the horizontal line. The coefficients a0, . . . , am of p are then obtained by multiplying
out the matrix-vector product above the line.

Ifm ≤ n, the essence of the matter remains the same, though it is worth displaying
the matrix anew to make it clear exactly what its form is:




a0

a1
...

am

am+1

...
an
...

am+n




=




c0
c1 c0
...

...
. . .

cm cm−1 . . . c0

cm+1 cm . . . c1 c0
...

...
. . .

. . .

cn cn−1

. . . c1 c0
...

...
...

cm+n cm+n−1 . . . cm







b0
b1
...
bn


 .(2.8)

Again we require (2.7) to hold, meaning that b should again be a null vector of the
matrix below the line, with a again obtained by multiplying above the line. Since an
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n × (n + 1) matrix always has a nontrivial null vector, we have confirmed (2.4), as
promised. There is no assurance that a and b are unique, and we shall spell out the
details of nonunique solutions in the next section.

Let us now focus on the portion of the linear algebra below the line, involving the
n× (n+ 1) matrix. This equation takes the form

0 = C̃b,(2.9)

where C̃ is the n× (n+ 1) Toeplitz matrix

C̃ =




cm+1 cm . . . cm+1−n

...
...

. . .
...

cm+n cm+n−1 . . . cm


 .(2.10)

For simplicity in cases with n > m + 1, we have adopted the convention that ck = 0
for k < 0. Let C denote the square n×n matrix obtained by deleting the first column
of C̃ :

C =




cm . . . cm+1−n

...
. . .

...
cm+n−1 . . . cm


 .(2.11)

Many treatments of Padé approximation work with this matrix, solving a linear system
of equations if its determinant is nonzero and bypassing it if its determinant is zero.
Often C is flipped so that its structure is Hankel rather than Toeplitz.

We shall make use of the singular value decomposition of C̃ , a factorization

C̃ = UΣV ∗,(2.12)

where U is n×n and unitary, V is (n+1)×(n+1) and unitary, and Σ is an n×(n+1)
real diagonal matrix with diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Suppose σn > 0. Then C̃ has rank n, and the final column of V provides a unique
nonzero null vector b of C̃ up to a scale factor. This null vector defines the coefficients
of q, with two subcases of special interest. If the square submatrix C is singular, then
necessarily b0 = 0. From (2.6) or (2.8) we see that this implies also a0 = 0. Thus p
and q share a common factor z, or possibly zλ for some λ > 1, and this factor can be
divided out at the end. If C is nonsingular, then b0 must be nonzero, and the defect
is δ = 0.

On the other hand, suppose σn = 0. In this case C̃ has rank ρ < n, with zero
singular values σρ+1 = · · · = σn = 0. Then C must have rank ρ or ρ − 1, so it is

singular. In particular, the submatrix of C̃ consisting of its last ρ + 1 columns must
be rank-deficient, implying that C̃ has a nonzero null vector that is zero in its first
n − ρ positions. The defect of the corresponding rational function is at least n − ρ,
and we can reduce n to ρ and m to m − (n − ρ) (or to 0 in the special case r = 0),
and start again.

These observations suggest the following SVD-based algorithm for the calculation
of the unique type (m,n) Padé approximant to a function f defined by its Taylor series.
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Algorithm 1. Pure Padé approximation in exact arithmetic

Input: m ≥ 0, n ≥ 0, and Taylor coefficients c0, . . . , cm+n of a function f .

Output: Polynomials p(z) = a0 + · · · + aµz
µ and q(z) = b0 + · · · + bνz

ν , b0 = 1,
of the minimal degree type (m,n) Padé approximation of f .

1. If c0 = · · · = cm = 0, set p = 0 and q = 1 and stop.

2. If n = 0, set p(z) = c0 + · · ·+ cmzm and q = 1 and go to Step 8.

3. Compute the SVD (2.12) of the n× (n+1) matrix C̃ . Let ρ ≤ n be the number
of nonzero singular values.

4. If ρ < n, reduce n to ρ and m to m− (n− ρ) and return to Step 2.

5. Get q from the null right singular vector b of C̃ and then p from the upper part
of (2.6) or (2.8).

6. If b0 = · · · = bλ−1 = 0 for some λ ≥ 1, which implies also a0 = · · · = aλ−1 = 0,
cancel the common factor of zλ in p and q.

7. Divide p and q by b0 to obtain a representation with b0 = 1.

8. Remove trailing zero coefficients, if any, from p(z) or q(z).

This algorithm produces the unique Padé approximant rmn in a minimal-degree
representation of type (µ, ν) with b0 = 1. We state this result as a theorem, whose
proof is part of a fuller discussion in the next section.

Theorem 2.1. Algorithm 1 (in exact arithmetic) converges in a finite number of
steps to the unique normalized minimal degree representation of the type (m,n) Padé
approximant rmn ∈ Rmn to f : polynomials p and q 6= 0 of exact degrees µ and ν with
no common factors and b0 = 1. The number of times that Step 3 is executed is no
greater than 2 + log2(δ + 1).

3. Square blocks and proof of Theorem 2.1. An understanding of how
Algorithm 1 works requires a discussion of block structure in the Padé table, by
which we mean the array of Padé approximants rmn for various m,n ≥ 0 associated
with a given function f :




r00 r10 r20 . . .
r01 r11 r21 . . .
r02 r12 r22 . . .
...

...
...

. . .


 .

Suppose r is a nonzero rational function of exact type (µ, ν) that is the type (m,n)
Padé approximant to f for at least one pair (m,n). Then it is known that there is
an integer k ≥ 0 such that r is the type (m,n) Padé approximant to f if and only if
µ ≤ m ≤ µ + k and ν ≤ n ≤ ν + k [17, Sec. 3], [30]. In other words, r is the Padé
approximant to f precisely in the following (k+1)× (k+1) square block of the Padé
table:




rµν . . . rµ+k,ν

...
...

rµ,ν+k . . . rµ+k,ν+k


 .(3.1)

We have already defined the defect δ of r as a function of type (m,n) with m ≥ µ
and n ≥ ν. Showing the case k = 5 for illustration, δ takes these values within a
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block:

defect δ:




0 0 0 0 0 0
0 1 1 1 1 1
0 1 2 2 2 2
0 1 2 3 3 3
0 1 2 3 4 4
0 1 2 3 4 5




.(3.2)

Similarly we define the deficiency λ of r as the distance below the cross-diagonal in
the square block, λ = max{0, (m− µ) + (n− ν)− k}, with the following pattern:

deficiency λ:




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 2 3
0 0 1 2 3 4
0 1 2 3 4 5




.(3.3)

Finally, the rank deficiency χ of r is defined by the formula

χ = δ − λ,(3.4)

and corresponds to the distance from the border of the square block:

rank deficiency χ:




0 0 0 0 0 0
0 1 1 1 1 0
0 1 2 2 1 0
0 1 2 2 1 0
0 1 1 1 1 0
0 0 0 0 0 0




.(3.5)

The following characterization of Padé approximants, which explains why χ is called
the rank deficiency, is equivalent to results derived in Section 3 of [17].

Theorem 3.1. Let f and m,n ≥ 0 be given, let µ, ν, k, δ, λ, χ be the parameters
defined above for the type (m,n) Padé approximant rmn to f , and let p̂ and q̂ 6= 0 be

polynomials of exact degrees µ and ν with rmn = p/q. Then the matrix C̃ of (2.10)
has rank n − χ, and two polynomials p ∈ Pm and q ∈ Pn, q 6= 0, satisfy (2.4) if and
only if

p(z) = zλw(z)p̂(z), q(z) = zλw(z)q̂(z)(3.6)

for some w ∈ Pδ−λ.
It is worth summarizing in words some of the implications of (3.6). The minimal

degree polynomials p̂ and q̂ 6= 0 of a Padé approximant r are unique apart from a
scalar multiple. The defect δ determines how many additional degrees of freedom
there are in the polynomials p and q of degrees m ≥ µ and n ≥ ν that represent r if
the condition (2.3) is used. In the upper-left half of a square block, this is the same
as the number of degrees of freedom in the polynomials p and q representing r by
(2.4). In the lower-right half of the block, however, representations (2.4) are more
constrained than those of (2.3), with the number of degrees of freedom being equal
to χ = δ − λ.
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We are now equipped to prove Theorem 2.1. The reader may find it helpful to
review the example summarized in Figure 5.2 in parallel with reading this proof.

Proof of Theorem 2.1. Each time Step 3 of Algorithm 1 is executed, either ρ = n
or ρ < n. In the first instance the algorithm executes Steps 5–8 and then stops,
whereas in the second it returns to Step 2 with smaller values of m and n. Thus it
terminates in at most δ steps. We must show that it terminates with p and q 6= 0 of
exact degrees µ and ν, that is, at the upper-left corner of the square block.

One way the algorithm can terminate is with n = 0 at Step 2, followed by Step 8.
In this case q = 1, with exact degree ν = 0, and p must have exact degree µ since
trailing zeros are removed at Step 8.

The other way the algorithm can terminate is with ρ = n at Step 5 followed by
Steps 6–8. In this case C̃ is of full rank n, so χ = 0 and (m,n) lies along the edge
of the square block. If it lies in the left column or top row, then Step 8 brings it to
the upper-left corner as required. If it lies in the right column or bottom row, then
the cancellation of the common factor zλ in Step 6 moves it to the top row or left
column, respectively, and Step 8 brings it to the upper-left corner again.

This completes the proof except for the final assertion that the number of ex-
ecutions of Step 3 is at most 2 + log2(δ + 1). If (m,n) lies in the top row or left
column, then the number of such executions is 0 or 1, and since δ = 0, this is less
than 2+ log2(δ+1). If (m,n) lies elsewhere in the upper-left half of the square block,
then the number of steps is at most 2, which again is less than 2+ log2(δ+1). Higher
numbers become possible if (m,n) begins in the lower-right half of the square block,
below the cross-diagonal and away from the boundary (hence always with δ > 0).
Here successive steps in the worst case might make (m,n) hop from one position to
the next with χ = 1, 2, 4, 8, . . . until eventually the upper-left half of the block is
reached; since χ can attain values no greater than δ/2, the maximum number of such
steps is log2 δ. At this point two further steps must complete the process, giving at
most 2 + log2 δ steps in total.

4. Modified algorithm for noisy data. It is well known that the singular
values of a matrix are well-conditioned functions of its entries. Specifically, if C̃ is
perturbed by a matrix of 2-norm at most ε, then each singular value is perturbed by
at most ε. Thus Algorithm 1 immediately suggests a variant for the case in which the
approximation problem is subject to noise, whether intrinsic to the data or introduced
by rounding errors. The modified algorithm is this: carry out the operations as before,
but treat a singular value as zero if it is less than tol · ‖c‖2, where c = (c0, . . . , cm+n)
and tol is a relative tolerance. The tolerance is applied also in the detection of zero
coefficients in Steps 1, 6, and 8. For most purposes involving problems perturbed just
by rounding errors, we take tol = 10−14.

In addition, there is another matter to consider for practical computation. Algo-
rithm 1 is implicitly tied to a scaling associated with the unit disk through the use
of the 2-norm to measure the coefficient vector b. In exact arithmetic this does not
matter, but in practical applications it means the algorithm will be most effective
when the coefficients {cj} of f are of roughly comparable sizes, neither decreasing nor
increasing at a rapid geometric rate. Thus it may be beneficial first to pick a param-
eter γ > 0 and compute the Padé approximant r̂mn(z) = rmn(z/γ) to f̂(z) = f(z/γ).
An algorithm for automatic determination of such parameters can be found in [10].
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Algorithm 2. Robust Padé approximation for noisy data or floating

point arithmetic

Input: m ≥ 0, n ≥ 0, Taylor coefficients c0, . . . , cm+n of a function f , and relative
tolerance tol ≥ 0.

Output: Polynomials p(z) = a0 + · · · + aµz
µ and q(z) = b0 + · · · + bνz

ν , b0 = 1,
of the minimal degree type (m,n) Padé approximation of a function close to f .

1. Rescale f(z) to f(z/γ) for some γ > 0 if desired to get a function whose Taylor
coefficients c0, . . . , cm+n do not vary too widely.

2. Define τ = tol · ‖c‖2. If |c0| = · · · = |cm| ≤ τ, set p = 0 and q = 1 and stop.
3. If n = 0, set p(z) = c0 + · · ·+ cmzm and q = 1 and go to Step 7.

4. Compute the SVD (2.12) of the n× (n+1) matrix C̃ . Let ρ ≤ n be the number

of singular values of C̃ that are greater than τ .
5. If ρ < n, reduce n to ρ and m to m− (n− ρ) and return to Step 3.

6. Get q from the null right singular vector b of C̃ and then p from the upper part
of (2.6) or (2.8).

7. If |b0|, . . . , |bλ−1| ≤ tol for some λ ≥ 1, zero the first λ coefficients of p and q
and cancel the common factor zλ.

8. If |bn+1−λ|, . . . , |bn| ≤ tol for some λ ≥ 1, remove the last λ coefficients of q.
If |am+1−λ|, . . . , |am| ≤ τ for some λ ≥ 1, remove the last λ coefficients of p.

9. Divide p and q by b0 to obtain a representation with b0 = 1.
10. Undo the scaling of Step 1 by redefining γjaj as aj and γjbj as bj for each j.

A Matlab code padeapprox implementing Algorithm 2 is shown in Figure 4.1
and is available at people.maths.ox.ac.uk/trefethen. Three lines of this code,
marked by comments beginning and ending with the word “reweighting,” go beyond
Algorithm 2. These lines compute the final null vector by QR factorization of a
column-reweighted matrix rather than by the SVD, an alternative that does a better
job of taking advantage of sparsity in Toeplitz matrices. The effect is that the blocks
produced in regions of a table corresponding to approximation accuracies close to tol
more often come out exactly square.

5. Examples of computed Padé tables and noise removal. Figure 5.1
shows Padé tables computed by padeapprox with tol = 10−14 for the functions
exp(z), cos(z), (z5 − 1)/(z5 + 1), and log(5 + z5). Each figure is based on the com-
putation of 441 distinct Padé approximants and took about 1 second to produce in
Matlab on a 2010 desktop machine. As described in the caption, the images show
the block structures for the various functions clearly. Since the blocks arise from
441 independent computations for various (m,n), this is a visual confirmation of the
reliability of Algorithm 2.

A departure from the theoretically expected block structure is apparent in the
lower-right part of the tables for the first two functions. Here, m and n are larger than
needed for resolution to machine precision, and the algorithm automatically reduces
them by equal amounts, moving up and left along a diagonal to smaller values of m
and n (Step 5 of Algorithm 2). Thus these diagonal stripes are indications of the
robustness of Algorithm 2 in the presence of rounding errors.

Figure 5.2 shows another Padé table as in Figure 5.1, but now with some addi-
tional numbers displayed. The purpose of this figure is to illustrate how the algorithm
works, as explained in the caption.

Figure 5.3 shows three more Padé tables, all corresponding to approximation of
the same noisy Taylor series but with different levels of the parameter tol. This



ROBUST PADÉ APPROXIMATION VIA SVD 9

function [r,a,b,mu,nu,poles,residues] = padeapprox(f,m,n,tol)

% Input: Function handle f or vector of coefficients f_0,...,f_(m+n).

% (If f is a function handle, the function must be analytic in a

% neighborhood of the unit disk since coeffs are computed via FFT.)

% Numerator and denominator degrees m>=0 and n>=0.

% An optional 4th argument specifies relative tolerance tol.

% If omitted, tol=1e-14. Use tol=0 to turn off robustness.

% Output: Function handle r of exact type (mu,nu) approximant to f

% with coeff vectors a and b and optional poles and residues.

% P. Gonnet, S. Guettel, and L. N. Trefethen, October 2011

if nargin<4, tol = 1e-14; end % default rel tolerance 1e-14

if ~isfloat(f) % compute coeffs if necessary

N = 2048; z = exp(2i*pi*(0:N-1)'/N); % sample at many roots of unity

f = fft(f(z))/N; % Fast Fourier Transform

tc = 1e-15*norm(f); f(abs(f)<tc) = 0; % discard near-zero coeffs

if norm(imag(f),inf)<tc, f = real(f); end % make real functions real

end

c = [f(:); zeros(m+n+1-length(f),1)]; % make sure c is long enough

c = c(1:m+n+1); % but not longer than necessary

ts = tol*norm(c); % absolute tolerance

if norm(c(1:m+1),inf)<=tol*norm(c,inf) % special case r=0

a = 0; b = 1; mu = -inf; nu = 0;

else

row = [c(1) zeros(1,n)]; col = c; % 1st row/col of Toeplitz matrix

while true % diagonal hopping across block

if n==0, a = c(1:m+1); b = 1; break, end % special case n=0

Z = toeplitz(col(1:m+n+1),row(1:n+1)); % Toeplitz matrix

C = Z(m+2:m+n+1,:);

rho = sum(svd(C)>ts); % numerical rank

if rho==n, break, end

m = m-(n-rho); n = rho; % decrease m,n if rank-deficient

end

if n>0 % hopping finished; compute b,a

[U,S,V] = svd(C,0);

b = V(:,n+1); % null vector gives b

D = diag(abs(b)+sqrt(eps)); % reweighting preserves zeros better

[Q,R] = qr((C*D).'); % so does final computation via QR

b = D*Q(:,n+1); b = b/norm(b); % compensate for reweighting

a = Z(1:m+1,1:n+1)*b; % multiplying gives a

lam = find(abs(b)>tol,1,'first')-1; % count leading zeros of b

b = b(lam+1:end); a = a(lam+1:end); % discard leading zeros of b,a

b = b(1:find(abs(b)>tol,1,'last')); % discard trailing zeros of b

end

a = a(1:find(abs(a)>ts,1,'last')); % discard trailing zeros of a

a = a/b(1); b = b/b(1); % normalize

mu = length(a)-1; nu = length(b)-1; % exact numer, denom degrees

end

r = @(z) polyval(a(end:-1:1),z)... % function handle for r

./polyval(b(end:-1:1),z);

if nargout>5 % only compute poles if necessary

poles = roots(b(end:-1:1)); % poles

t = max(tol,1e-7); % perturbation for residue estimate

residues = t*(r(poles+t)-r(poles-t))/2; % estimate of residues

end

Fig. 4.1. Matlab code padeapprox for robust Padé approximation, based on Algorithm 2. The
input function can be either a vector of Taylor coefficients or a function handle. The code is available
at people.maths.ox.ac.uk/trefethen.
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Fig. 5.1. Padé tables computed numerically by Algorithm 2, with m and n on the horizontal
and vertical axes, respectively. Each square (m,n) is marked by a color determined by the exact
type (µ, ν) of the corresponding approximant, so that each square block appears in a single color.
For exp(z), all the entries lie in 1 × 1 blocks until the function is resolved to machine precision,
after which the numerator and denominator degrees are systematically reduced as far as possible,
causing diagonal stripes (Step 5 of Algorithm 2). For the even function cos(z), 2× 2 square blocks
appear. For (z5 − 1)/(z5 + 1), we get an infinite square block since the function is resolved exactly
for m,n ≥ 5. For log(5 + z5), there are 5× 5 blocks all the way down.

example is mentioned at the beginning of [14]. When tol is above the noise level,
padeapprox detects the underlying rational function reliably.

6. Examples of the elimination of Froissart doublets. As we have men-
tioned, rounding errors or other perturbations commonly introduce Froissart doublets
in computed Padé approximations that do not reflect genuine information about f
nor contribute to the quality of the approximation. We now give a few examples to
illustrate how Algorithm 2 removes such effects by reducing the degrees m and n.
Following a pattern employed in [16], each example is presented in the form of a two-
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Fig. 5.2. The numerically computed Padé table for f(z) = 1+ z+ z8 + z20 + z30, with numbers
showing the path taken by Algorithm 2 for the particular case (m,n) = (14, 9). Starting at this
position of the table (label 1), the algorithm finds that the 9 × 10 Toeplitz matrix (2.10) has rank
deficiency χ = 2, so it moves to position (12, 7) (label 2, Step 5 of Algorithm 2). This 7× 8 matrix
has rank deficiency 4, causing a move to (8, 3) (label 3, Step 5). At this point three trailing zeros of
b are discarded (Step 8), bringing us to the final position (8, 0) (label 4).

tol ≤ 10−8
tol = 10−6

tol ≥ 10−5

Fig. 5.3. An explicit example of noise removal by Algorithm 2. Here the Taylor series is
defined by coefficients cj = 1 + 10−6sj , where {sj} are independent samples from the standard
normal distribution. This corresponds to the function 1/(1 − z) plus noise on a scale of 10−6. If
padeapprox is run with tol = 10−8 or a lower value such as the default 10−14, the noise has the
effect of making the Padé approximants distinct, and we see 1 × 1 blocks. With a tolerance above
the noise level, tol ≥ 10−5, the code detects that this is essentially a rational function of type (0, 1).

part figure showing results from Algorithm 2 in its non-robust form with tol = 0 on
the left, and in its robust form with the default value tol = 10−14 on the right. The
unit circle is marked by a dotted line. The pair (m,n) is listed on the upper-right.
The lower-left of each plot lists the exact type (µ, ν) returned by padeapprox and the
elapsed time for computing this approximation on a 2010 desktop computer.

Each plot also lists a number Err, equal to the maximum of |f(z)− r(z)| over the
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discrete grid of 1976 points in the disk |z| ≤ 0.5 whose real and imaginary coordinates
are odd multiples of 0.01. This gives a rough indication of the success of the algorithm
in computing an effective approximation to f . The radius is chosen less than 1 to
stay away from Froissart doublets clustered near the unit circle [14], but there is no
special significance to the particular choice 0.5.

Finally, each plot also shows the poles of r, marked by dots, following a scheme
suggested by Grady Wright of Boise State University. The absolute value of the
residue at each pole of r, evaluated by a finite difference, is indicated by a color code:

|residue| ∈





[10−3,∞) blue

[10−12, 10−3) green

[0, 10−12) red

Thus a blue pole has a good chance of being genuine and useful for approximation,
whereas red poles are likely to be artifacts introduced by rounding errors. As it
happens, no green poles appear in any of the figures of this paper.

Figures 6.1–6.3 show Padé approximations to the function f(z) = tan(z4), which
has poles outside the unit circle lying along eight rays emanating from the origin. For
larger m and n, the removal of Froissart doublets by Algorithm 2 is striking.

Figure 6.4 shows results for a function with a branch point, f(z) = log(1.2− z).
According to a theory of Stahl, most of the poles of Padé approximants to such
functions line up along certain branch curves determined by a capacity-minimization
condition in the z−1-plane [27]. (There is no assurance that all the poles must lie
near the branch curves, merely a fraction of them approaching 1.) In this case the
curve in question is the interval [1.2,∞), and the figure shows blue poles lining up as
expected.

Figure 6.5 shows results for a function with an essential singularity, f(z) =
exp((z + 1.5)−2).

7. Ill-posedness and stability. It is easy to show that Padé approximation
problems are sometimes ill-posed. For example, here is a function and its type (1, 1)
Padé approximant:

f(z) = 1 + z2, r11(z) = 1.

The approximant matches f only through power z1, but that is enough, according to
(2.2), since the defect is 1. An arbitrarily small perturbation of f , however, changes
r11 completely:

f(z) = 1 + εz + z2, r11(z) =
1− (1− ε2)z/ε

1− z/ε
(ε 6= 0).

This perturbed function, which now matches f through order z2, has a Froissart
doublet with a pole at z = ε of residue −ε3 and a zero at ε/(1− ε2).

The example points the way to the general case: a Padé approximation problem
is ill-posed if and only if rmn has defect δ > 0. The reason is that an arbitrarily small
perturbation could fracture the block, forcing rmn to match f to a higher order than
before. For details see [30, 33].

Our point of view as numerical analysts is that it is not reasonable to ask an
algorithm to find nearly the exact solution of an ill-posed problem. A more reasonable
expectation is that an algorithm should be stable, finding nearly the exact solution
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Err = 2.8e−17

(20,20)Robust Padé

(20,16)
0.003 secs.Err = 2.8e−17

(20,20)Padé, tol=0

(20,20)
0.003 secs.

Fig. 6.1. Type (20, 20) approximation of tan(z4), a function with poles along eight rays ema-
nating from the origin. Both the non-robust and robust algorithms place poles near the innermost
16 poles of f , the inner 8 matching the poles of f to six digits and the next 8 to two digits. There is
little difference between the two algorithms except that the robust one reduces the type from (20, 20)
to (20, 16), removing four poles with absolute value about 2× 105.

Err = 3.6e−17

(100,100)Robust Padé

(36,32)
0.006 secs.Err = 3.0e−17

(100,100)Padé, tol=0

(100,100)
0.024 secs.

Fig. 6.2. Type (100, 100) approximation of tan(z4). Now each algorithm places four poles along
each of the eight rays, which match the poles of f to approximately 14, 6, 3, and 2 digits (from inside
out). These very accurate agreements of computed poles show how powerful Padé approximation can
be for extracting information about a Taylor series beyond its circle of convergence. The non-robust
algorithm also produces 64 Froissart doublets near the unit circle, as well as four additional doublets
of absolute value about 3× 103, all of which are removed by the robust algorithm.

Err = 3.0e−17

(20,100)Robust Padé

(12,72)
0.015 secs.Err = 3.6e−17

(20,100)Padé, tol=0

(20,100)
0.019 secs.

Fig. 6.3. The type (20, 100) approximation of tan(z4) shows the kind of effects that may arise
with n > m. Here both the robust and non-robust approximations place some poles along a circle
outside the unit disk.
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Err = 3.5e−15

(20,20)Robust Padé

(10,10)
0.003 secs.Err = 6.4e−16

(20,20)Padé, tol=0

(20,20)
0.002 secs.

Fig. 6.4. Type (20, 20) approximation of log(1.2− z). This function has a branch cut [1.2,∞)
that attracts poles in keeping with the theory of Stahl [27]: 13 such in the non-robust approximation,
10 in the robust one. The non-robust algorithm scatters six additional spurious poles near the left
half of the unit circle as well as two other negative real poles off the scale of the plot at about −6
and −8.

Err = 6.5e−14

(60,60)Robust Padé

(8,8)
0.004 secs.Err = 1.6e−14

(60,60)Padé, tol=0

(60,60)
0.005 secs.

Fig. 6.5. Type (60, 60) approximation of f(z) = exp((z + 1.5)−2), a function with an essential
singularity at z = −1.5.

of a slightly perturbed problem [32]. We hope to discuss stability of Algorithm 2 in
a future publication. Note that a stable algorithm need not always produce square
blocks, since different choices of m and n will correspond to different perturbations
of the data.

The idea of regularization, which applies across a wide range of ill-posed problems,
involves a balance between the accuracy of a solution and its other properties such
as smoothness [19]. In eliminating Froissart doublets, we are slightly reducing the
accuracy of our solution to a certain matrix problem, but the benefit is that the
resulting function rmn will be pole-free in most regions where f itself is pole-free.
Consequently, in an application, it may be a better solution to the scientific problem
that lies behind the ill-posed linear algebra problem.

8. A modified Padé approximant with pointwise convergence. The main
purpose of this paper has been to propose a regularized algorithm for computing Padé
approximations in floating point arithmetic or for problems with noise. However, one
of the interesting features of the SVD-based approach is that it may also be applicable
in the theoretical setting of exact arithmetic for problems with no noise, because this
situation too is afflicted by seemingly spurious pole-zero pairs.

How can an exactly correct pole-zero pair be spurious? The phenomenon in
question has been recognized for a century, going back at least to Perron in 1913 [25],
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and a formal definition of spurious poles is given in [28]. In the simplest case, suppose
f is a meromorphic function in the complex plane C, and consider the behavior of
f − rnn as n → ∞. A natural hope might be that on any compact set E disjoint from
the poles of f , the supremum norm of f−rmn over E, ‖f−rmn‖E , should converge to
zero. However, this does not happen in general. The Padé approximants rmn can have
poles in arbitrary locations in C, and as n → ∞, although the residues of these poles
will decrease, they need never disappear entirely. In fact it may even happen that
the type (n, n) Padé approximants to a fixed entire function f have so many spurious
poles that the sequence of approximants is unbounded at every nonzero point in the
complex plane [36].

In the face of this fact about Padé approximation, theorems have been developed
that assert a weaker kind of convergence: convergence in measure or convergence in
capacity. For meromorphic functions there is the Nuttall–Pommerenke Theorem [2,
21, 26], and for functions with branch points, there is a beautiful generalization by
Stahl mentioned in the last section of [27]. For the simpler problem of approximations
of type (m,n) withm → ∞ while n remains fixed, there is the de Montessus de Ballore
Theorem [2, 20], and even in this case one must be careful to exclude spurious poles.

Our SVD-based algorithm suggests another possibility. Can one define a modified
Padé approximant r̃mn that is guaranteed to converge, with no exceptional sets? For
each n, one could define r̃nn to be the rational function computed in exact arithmetic
by an algorithm like Algorithm 2 with tolerance tol = toln, where toln is a function
of n that decreases to 0 as n → ∞. Analogous definitions could be developed for
approximations rmn with m 6= n. Might such an approximation scheme be pointwise
convergent? This is a challenge for theorists.

9. Discussion. Padé approximations arise in many applications, and Algorithm
2 will not be appropriate for all of them. Our framework is numerical approximation
theory, in the spirit of [31] and [34]. Applications we have in mind include analytic
continuation and extrapolation of sequences and series, both based on data at a
single point in the complex plane. For data on a circle, we recommend the least-
squares approach of [16], and for data on an interval, see the ratinterp command in
Chebfun [34].

Many methods that have been proposed for extrapolation, such as the Aitken,
Shanks, eta and epsilon methods, are mathematically equivalent to the evaluation
of certain Padé approximants but have traditionally been formulated algorithmically
by fast recurrence relations related to continued fractions, in the interests of speed.
Indeed, the Toeplitz structure of the Padé problem makes possible some remarkably
fast algorithms, in theory [5]. This focus on fast recurrences may be the right strategy
for some applications, but we suspect that for many problems nowadays, it is better
to use more robust algorithms, whose O(n3) complexity will rarely be a problem.

A central feature of our algorithm is that it removes spurious Froissart dou-
blets as a by-product of the use of numerical ranks computed with the SVD. Other
methods for removing doublets have also been proposed, typically based on explicit
computation of zeros and poles, sometimes with the use of extended precision arith-
metic [3, 4, 7, 9, 13, 14, 15, 29]. On the other hand, Perotti, Vrinceanu, and Bessis
argue that Froissart doublets can actually be beneficial in the sense that perturbations
in their distribution from a regular pattern along the unit circle may reveal locations
of underlying genuine poles [24].

An example of a different set of applications related to Padé approximation are
problems of signal processing or model reduction, where the aim is to extract a low-
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order model from a sequence of hundreds of possibly noisy data values [3, 8, 18, 22]. In
such problems the sampled data are typically assumed to come from a stable system,
which would correspond for our problem to poles only outside the unit disk, and low-
rank fits to sufficiently long data sequences will inherit this stability property. That is
a different setting from the one we have focussed on here, which starts from arbitrary
Taylor coefficients, without an a priori assumption of scaling to the unit disk.

Padé approximants also appear in the study of Krylov subspace iterations for the
solution of large matrix problems. Here the issue of degeneracies and square blocks
has been of considerable interest, and “look-ahead” variants of some algorithms have
been devised to jump around square blocks [11]. A feature of such problems is that
since the scales are large, one is necessarily working with partial information obtained
from recurrences, so the systematic use of the SVD as in Algorithm 2 is not an option.

The algorithm we have proposed works well, but we do not regard it as the last
word on this subject. Other choices could have been made, and in particular, our
method of hopping across a square block to find the upper-left corner is not the only
reasonable one. For example, one could reduce just n rather than both m and n in
cases of rank deficiency, and this would lead to vertical rather than diagonal stripes in
the upper panels of Figure 5.1. (See [35] for an algorithm to find the upper-left corner
of a square block in the case of Carathéodory–Fejér approximation.) The choices we
have made seem to be effective, and one must remember that for most functions, few
reductions of (m,n) will take place at all, so getting to the upper-left corner of a block
by absolutely the shortest route possible is not a high priority. The true priority is
robustness, and we believe Algorithm 2 meets this need effectively.
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